umu.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Algesten, Grete
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Sobek, Sobek
    Department of Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden .
    Tranvik, Lars T.
    Department of Limnology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden .
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Seasonal variation of CO2 saturation in the Gulf of Bothnia: Indications of marine net heterotrophy2004In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 18, p. 4021-4028Article in journal (Refereed)
    Abstract [en]

    Seasonal variation of pCO2 and primary and bacterioplankton production were measured in the Gulf of Bothnia during an annual cycle. Surface water was supersaturated with CO2 on an annual basis, indicating net heterotrophy and a source of CO2 to the atmosphere. However, the Gulf of Bothnia oscillated between being a sink and a source of CO2 over the studied period, largely decided by temporal variation in bacterial respiration (BR) and primary production (PP) in the water column above the pycnocline. The calculated annual respiration-production balance (BR-PP) was very similar to the estimated CO2 emission from the Gulf of Bothnia, which indicates that these processes were major determinants of the exchange of CO2 between water and atmosphere. The southern basin (the Bothnian Sea) had a lower net release of CO2 to the atmosphere than the northern Bothnian Bay (7.1 and 9.7 mmol C m−2 d−1, respectively), due to higher primary production, which to a larger extent balanced respiration in this basin.

  • 2.
    Ask, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Net ecosystem production in clear-water and brown-water lakes2012In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 26, p. GB1017-Article in journal (Refereed)
    Abstract [en]

    We studied 15 lakes in northern Sweden with respect to primary production and respiration in benthic and pelagic habitats. The lakes were characterized by different concentrations of colored dissolved organic carbon (DOC) of terrestrial origin, forming a gradient ranging from clear-water to brown-water lakes. Primary production decreased and respiration increased on a whole-lake scale along the gradient of increasing DOC. Thus, the lakes became more net heterotrophic, i.e., had lower net ecosystem production (NEP = gross primary production - community respiration), with increasing terrestrial DOC and this change coincided with increasing partial pressure of carbon dioxide (pCO(2)) in the surface waters. The single most important process for the increasing net heterotrophy along the DOC gradient was pelagic respiration of terrestrial organic carbon. In spite of high metabolic activity in the benthic habitat, benthic primary production and benthic respiration decreased simultaneously with increasing DOC, showing that the benthic habitat was in metabolic balance throughout the gradient. Therefore, the net heterotrophic states of the lakes depended on the terrestrial DOC export to lakes and the concomitant respiration of terrestrial organic carbon in the pelagic habitat.

  • 3.
    Berggren, Martin
    et al.
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Laudon, Hjalmar
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Ecology and Environmental Science.
    Landscape regulation of bacterial growth efficiency in boreal freshwaters2007In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 21Article in journal (Refereed)
    Abstract [en]

    Allochthonous organic carbon in aquatic systems is metabolized by heterotrophic bacteria, with significant consequences for the biostructure and energy pathways of freshwater ecosystems. The degree to which allochthonous substrates support growth of bacteria is largely dependent on bacterial growth efficiency (BGE), i.e., bacterial production (BP) per unit of assimilated carbon. Here we show how the spatial variability of BGE in the boreal region can be mediated by the distribution of the two dominating landscape elements forest and mires. Using an 11 days bioassay approach, the production and respiration of bacteria were measured in water samples from nine small Swedish streams (64°N 19°E), representing a gradient ranging from organic carbon supplied mainly from peat mires to carbon supplied mainly from coniferous forests. BP was positively correlated to forest coverage (%) of the catchment, while bacterial respiration was similar in all streams. Consequently, BGE showed a strong positive correlation with forest coverage. Partial least square regression showed that BGE was chiefly regulated by qualitative properties of the organic material, indicated by the absorbance ratio a254/a365 plus C/N and C/P ratios. The data suggest that a share of the organic carbon pool, drained mainly from forest soils, had a potential of being incorporated into bacterial biomass with great efficiency. Its potential for supporting growth was probably nutrient regulated as indicated by inorganic nutrient enrichment experiments.

  • 4. Catalán, N.
    et al.
    Casas-Ruiz, J. P.
    Arce, M. I.
    Abril, M.
    Bravo, A. G.
    del Campo, R.
    Estévez, E.
    Freixa, A.
    Giménez-Grau, P.
    González-Ferreras, A. M.
    Gómez-Gener, Luís
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lupon, A.
    Martinez, A.
    Palacin-Lizarbe, C.
    Poblador, S.
    Rasines-Ladero, R.
    Reyes, M.
    Rodriguez-Castillo, T.
    Rodriguez-Lozano, P.
    Sanpera-Calbet, I.
    Tornero, I.
    Pastor, A.
    Behind the Scenes: mechanisms Regulating Climatic Patterns of Dissolved Organic Carbon Uptake in Headwater Streams2018In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 32, no 10, p. 1528-1541Article in journal (Refereed)
    Abstract [en]

    Large variability in dissolved organic carbon (DOC) uptake rates has been reported for headwater streams, but the causes of this variability are still not well understood. Here we assessed acetate uptake rates across 11 European streams comprising different ecoregions by using whole-reach pulse acetate additions. We evaluated the main climatic and biogeochemical drivers of acetate uptake during two seasonal periods. Our results show a minor influence of sampling periods but a strong effect of climate and dissolved organic matter (DOM) composition on acetate uptake. In particular, mean annual precipitation explained half of the variability of the acetate uptake velocities (Vf(Acetate)) across streams. Temperate streams presented the lowest Vf(Acetate), together with humic-like DOM and the highest stream respiration rates. In contrast, higher Vf(Acetate) were found in semiarid streams, with protein-like DOM, indicating a dominance of reactive, labile compounds. This, together with lower stream respiration rates and molar ratios of DOC to nitrate, suggests a strong C limitation in semiarid streams, likely due to reduced inputs from the catchment. Overall, this study highlights the interplay of climate and DOM composition and its relevance to understand the biogeochemical mechanisms controlling DOC uptake in streams. Plain Language Summary Headwater streams receive and degrade organic carbon and nutrients from the surrounding catchments. That degradation can be assessed by measuring the uptake of simple compounds of carbon or nitrogen such as acetate or nitrate. Here we determine the variability in acetate and nitrate uptake rates across headwater streams and elucidate the mechanisms behind that variability. The balance between nutrients, the composition of the organic materials present in the streams, and the climatic background is at interplay.

  • 5.
    Giesler, Reiner
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Morth, Carl-Magnus
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lundin, Erik J.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lyon, Steve W.
    Humborg, Christoph
    Spatiotemporal variations of pCO(2) and delta C-13-DIC in subarctic streams in northern Sweden2013In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 27, no 1, p. 176-186Article in journal (Refereed)
    Abstract [en]

    Current predictions of climate-related changes in high-latitude environments suggest major effects on the C export in streams and rivers. To what extent this will also affect the stream water CO2 concentrations is poorly understood. In this study we examined the spatiotemporal variation in partial pressure of CO2 (pCO(2)) and in stable isotopic composition of dissolved inorganic carbon (delta C-13-DIC) in subarctic streams in northern Sweden. The selected watersheds are characterized by large variations in high-latitude boreal forest and tundra and differences in bedrock. We found that all streams generally were supersaturated in pCO(2) with an average concentration of 850 mu atm. The variability in pCO(2) across streams was poorly related to vegetation cover, and carbonaceous bedrock influence was manifested in high DIC concentrations but not reflected in either stream pCO(2) or delta C-13-DIC. Stream water pCO(2) values were highest during winter base flow when we also observed the lowest delta C-13-DIC values, and this pattern is interpreted as a high contribution from CO2 from soil respiration. Summer base flow delta C-13-DIC values probably are more affected by in situ stream processes such as aquatic production/respiration and degassing. A challenge for further studies will be to disentangle the origin of stream water CO2 and quantify their relative importance.

  • 6.
    Isles, Peter D. F.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Creed, Irena F.
    Bergström, Ann-Kristin
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Recent Synchronous Declines in DIN:TP in Swedish Lakes2018In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 32, no 2, p. 208-225Article in journal (Refereed)
    Abstract [en]

    Declining atmospheric nitrogen (N) deposition in northern Europe and parts of North America, coupled with ongoing changes in climate, has the potential to alter the nutrient limitation status of freshwater ecosystems. In this study we compared time series data of atmospheric N deposition, air temperature, and precipitation with corresponding estimates of dissolved inorganic nitrogen (DIN), total phosphorus (TP), DIN: TP, and total organic carbon from 78 headwater streams and 95 nutrient-poor lakes in Sweden from 1998 to 2013 to assess trends in, and potential drivers of, lake N:P ratios. We found that trends in nutrients were variable at the scale of individual lakes but were highly synchronous at the regional scale, suggesting underlying control by broad-scale environmental drivers mediated by site-specific characteristics. Widespread declines in lake DIN throughout Sweden were correlated with declines in atmospheric N deposition, particularly in northern areas. TP did not have strong directional trends, but interannual variability was synchronous at regional scales, implying that broad-scale climate drivers were affecting these trends. Overall, we observed a significant decline in DIN:TP throughout Sweden over the monitoring period. At the beginning of the study period, 32% of lakes were N limited and 45% colimited by N and P. Proportions increased to 63% of lakes N limited and 20% colimited by N and P at the end of the study period. These results suggest that N limitation is likely to become more widespread in subarctic and boreal areas of Europe in the future if recent trends continue. Plain Language Summary This article examines the way in which changes in the amount of nitrogen from the atmosphere being delivered to lakes (as a result of fossil fuel combustion) are interacting with global climate change to affect nutrient availability in Swedish lakes. Nitrogen can act as fertilizer in lakes, supporting increased growth of algae and aquatic plants. The amount of nitrogen relative to other important elements such as phosphorus can help to determine which groups of plants and algae dominate lake ecosystems, as well as how much living biomass lakes can sustain. We find that declines in atmospheric deposition of nitrogen, which have resulted from the adoption of policies controlling emissions from fossil fuel combustion, have caused declines in nitrogen concentrations in lakes throughout Sweden. This has changed the balance of nitrogen and phosphorus, which may result in changes to the structure of lake biological communities. At the same time, variability in climate also has subtle but widespread affects on lake nutrient concentrations, suggesting that the availability of nutrients in lakes at northern latitudes is likely to change in the future as the climate warms.

  • 7.
    Klaus, Marcus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Seekell, David A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Lidberg, William
    Department of Forest Ecology and Management, Swedish University of Agricultural Science, Umeå, Sweden.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Evaluations of Climate and Land Management Effects on Lake Carbon Cycling Need to Account Temporal Variability in CO2 Concentration2019In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 33, no 3, p. 243-265Article in journal (Refereed)
    Abstract [en]

    Carbon dioxide (CO2) concentrations in lakes vary strongly over time. This variability is rarely captured by environmental monitoring but is crucial for accurately assessing the magnitude of lake CO2 emissions. However, it is unknown to what extent temporal variability needs to be captured to understand important drivers of lake carbon cycling such as climate and land management. We used environmental monitoring data of Swedish forest lakes collected in autumn (n = 439) and throughout the whole open water season (n = 22) from a wet and a dry year to assess temporal variability in effects of climate and forestry on CO2 concentrations across lakes. Effects differed depending on the season and year sampled. According to cross-lake comparisons based on autumn data, CO2 concentrations increased with annual mean air temperature (dry year) or catchment forest productivity (wet year) but were not related to colored dissolved organic matter concentrations. In contrast, open water-season averaged CO2 concentrations were similar across temperature and productivity gradients but increased with colored dissolved organic matter. These contradictions resulted from scale mismatches in input data, lead to weak explanatory power (R-2 = 9-32%), and were consistent across published data from 79 temperate, boreal, and arctic lakes. In a global survey of 144 published studies, we identified a trade-off between temporal and spatial coverage of CO2 sampling. This trade-off clearly determines which conclusions are drawn from landscape-scale CO(2 )assessments. Accurate evaluations of the effects of climate and land management require spatially and temporally representative data that can be provided by emerging sensor technologies and forms of collaborative sampling.

  • 8. Kronberg, Rose-Marie
    et al.
    Drott, Andreas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jiskra, Martin
    Wiederhold, Jan G.
    Björn, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Skyllberg, Ulf
    Forest harvest contribution to Boreal freshwater methyl mercury load2016In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 30, no 6, p. 825-843Article in journal (Refereed)
    Abstract [en]

    Effects of Boreal forest harvest on mercury (Hg) and methyl mercury (MeHg) soil pools and export by stream runoff were quantified by comparing 10 reference watersheds (REFs) covered by >80year old Norway spruce (Picea abies Karst.) forests with 10 similar watersheds subjected to clear-cutting (CCs). While total Hg soil storage did not change, MeHg pools increased seven times (p=0.006) in the organic topsoil 2 years after clear-cutting. In undulating terrain, situated above the postglacial marine limit (ML) of the ancient Baltic Sea, the mass ratio between flux-weighted MeHg and dissolved organic carbon (MeHg/DOC) in stream runoff increased 1.8 times (p<0.004) as a consequence of forest harvest. When recalculated to 100% clear-cutting of the watershed, the annual MeHg stream export increased 3.8 times (p=0.047). Below the ML, where the terrain was flatter, neither the MeHg/DOC ratio nor the annual export of MeHg differed between REFs and CCs, likely because of the larger contribution of MeHg exported from peaty soils and small wetlands. The most robust measure, MeHg/DOC, was used to calculate MeHg loadings to Boreal headwaters. If the forest harvest effect lasts 10years, clear-cutting increases MeHg runoff by 12-20% in Sweden and 2% in the Boreal zone as a whole. In Sweden, having intensely managed forests, 37% and 56% of MeHg are exported from peatlands and forest soils, respectively, and forest clear-cutting is adding another 6.6%. In the Boreal zone as a whole peatlands and forests soils contribute with 53% and 46%, respectively, and clear-cutting is estimated to add another 1.0%. An expected rapid increase in Boreal forest harvest and disturbance urge for inclusion of land use effects in mercury biogeochemical cycling models at different scales.

  • 9. Serrano, O.
    et al.
    Martinez-Cortizas, A.
    Mateo, M. A.
    Biester, H.
    Bindler, Richard
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Millennial scale impact on the marine biogeochemical cycle of mercury from early mining on the Iberian Peninsula2013In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 27, no 1, p. 21-30Article in journal (Refereed)
    Abstract [en]

    The high-resolution mercury record of a Posidonia oceanica mat in the northwest Mediterranean provides an unprecedented testimony of changes in environmental mercury (Hg) loading to the coastal marine environment over the past 4315 yr BP. The period reconstructed made it possible to establish tentative preanthropogenic background Hg levels for the area (6.8 +/- 1.5 ng g(-1) in bulk sediments). A small, but significant, anthropogenic Hg increase was identifiable by similar to 2500 yr BP, in agreement with the beginning of intense mining in Spain. Changes in the record suggest four major periods of anthropogenic Hg pollution inputs to the Mediterranean: first, during the Roman Empire (2100-1800 yr BP); second, in the Late Middle Ages (970-650 yr BP); third, in the modern historical era (530-380 yr BP); and fourth, in the industrial period (last 250 years), with Hg concentrations two-, four-, five-, and tenfold higher than background concentrations, respectively. Hg from anthropogenic sources has dominated during the last millennium (increase from similar to 12 to similar to 100 ng g(-1)), which can be related to the widespread historical exploitation of ore resources on the Iberian Peninsula. The chronology of Hg concentrations in the mat archive, together with other Hg pollution records from the Iberian Peninsula, suggests regional-scale Hg transport and deposition and shows earlier marine Hg pollution than elsewhere in Europe. Moreover, the mat also records a higher number of historic contamination phases, in comparison with other natural archives, probably due to the fact that the bioaccumulating capacity of P. oceanica magnify environmental changes in Hg concentrations. In this study, we demonstrate the uniqueness of P. oceanica meadows as a long-term archive recording trends in Hg abundance in the marine coastal environment, as well as its potential role in the Mediterranean as a long-term Hg sink.

  • 10. Soerensen, A. L.
    et al.
    Schartup, A. T.
    Skrobonja, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bouchet, S.
    Amouroux, D.
    Liem-Nguyen, Van
    Umeå University, Faculty of Science and Technology, Department of Chemistry. School of Science and Technology, Örebro University, Örebro, Sweden.
    Björn, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Deciphering the Role of Water Column Redoxclines on Methylmercury Cycling Using Speciation Modeling and Observations From the Baltic Sea2018In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 32, no 10, p. 1498-1513Article in journal (Refereed)
    Abstract [en]

    Oxygen-depleted areas are spreading in coastal and offshore waters worldwide, but the implication for production and bioaccumulation of neurotoxic methylmercury (MeHg) is uncertain. We combined observations from six cruises in the Baltic Sea with speciation modeling and incubation experiments to gain insights into mercury (Hg) dynamics in oxygen depleted systems. We then developed a conceptual model describing the main drivers of Hg speciation, fluxes, and transformations in water columns with steep redox gradients. MeHg concentrations were 2-6 and 30-55 times higher in hypoxic and anoxic than in normoxic water, respectively, while only 1-3 and 1-2 times higher for total Hg (THg). We systematically detected divalent inorganic Hg (Hg-II) methylation in anoxic water but rarely in other waters. In anoxic water, high concentrations of dissolved sulfide cause formation of dissolved species of Hg-II: HgS2H(aq)- and Hg (SH)(2)(0)((aq)). This prolongs the lifetime and increases the reservoir of Hg-II readily available for methylation, driving the high MeHg concentrations in anoxic zones. In the hypoxic zone and at the hypoxic-anoxic interface, Hg concentrations, partitioning, and speciation are all highly dynamic due to processes linked to the iron and sulfur cycles. This causes a large variability in bioavailability of Hg, and thereby MeHg concentrations, in these zones. We find that zooplankton in the summertime are exposed to 2-6 times higher MeHg concentrations in hypoxic than in normoxic water. The current spread of hypoxic zones in coastal systems worldwide could thus cause an increase in the MeHg exposure of food webs.

  • 11. Teutschbein, C.
    et al.
    Sponseller, Ryan A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Grabs, T.
    Blackburn, M.
    Boyer, E. W.
    Hytteborn, J. K.
    Bishop, K.
    Future Riverine Inorganic Nitrogen Load to the Baltic Sea From Sweden: An Ensemble Approach to Assessing Climate Change Effects2017In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 31, no 11, p. 1674-1701Article in journal (Refereed)
    Abstract [en]

    The dramatic increase of bioreactive nitrogen entering the Earth's ecosystems continues to attract growing attention. Increasingly large quantities of inorganic nitrogen are flushed from land to water, accelerating freshwater, and marine eutrophication. Multiple, interacting, and potentially countervailing drivers control the future hydrologic export of inorganic nitrogen. In this paper, we attempt to resolve these land-water interactions across boreal/hemiboreal Sweden in the face of a changing climate with help of a versatile modeling framework to maximize the information value of existing measurement time series. We combined 6,962 spatially distributed water chemistry observations spread over 31years with daily streamflow and air temperature records. An ensemble of climate model projections, hydrological simulations, and several parameter parsimonious regression models was employed to project future riverine inorganic nitrogen dynamics across Sweden. The median predicted increase in total inorganic nitrogen export from Sweden (2061-2090) due to climate change was 14% (interquartile range 0-29%), based on the ensemble of 7,500 different predictions for each study site. The overall export as well as the seasonal pattern of inorganic nitrogen loads in a future climate are mostly influenced by longer growing seasons and more winter flow, which offset the expected decline in spring flood. The predicted increase in inorganic nitrogen loading due to climate change means that the political efforts for reducing anthropogenic nitrogen inputs need to be increased if ambitions for reducing the eutrophication of the Baltic Sea are to be achieved.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf