umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Ahlgren, Joakim
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). The Swedish Institute for the Marine Environment, PO Box 260, SE-40530 Göteborg, Sweden.
    Grimvall, Anders
    Omstedt, Anders
    Rolff, Carl
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF). The Swedish Institute for the Marine Environment, PO Box 260, SE-40530 Göteborg, Sweden.
    Temperature, DOC level and basin interactions explain the declining oxygen concentrations in the Bothnian Sea2017In: Journal of Marine Systems, ISSN 0924-7963, E-ISSN 1879-1573, Vol. 170, p. 22-30Article in journal (Refereed)
    Abstract [en]

    Hypoxia and oxygen deficient zones are expanding worldwide. To properly manage this deterioration of the marine environment, it is important to identify the causes of oxygen declines and the influence of anthropogenic activities. Here, we provide a study aiming to explain the declining oxygen levels in the deep waters of the Bothnian Sea over the past 20 years by investigating data from environmental monitoring programmes. The observed decline in oxygen concentrations in deep waters was found to be primarily a consequence of water temperature increase and partly caused by an increase in dissolved organic carbon (DOC) in the seawater (R-Adj(2). = 0.83) as well as inflow from the adjacent sea basin. As none of the tested eutrophication-related predictors were significant according to a stepwise multiple regression, a regional increase in nutrient inputs to the area is unlikely to explain a significant portion of the oxygen decline. Based on the findings of this study, preventing the development of anoxia in the deep water of the Bothnian Sea is dependent on the large-scale measures taken to reduce climate change. In addition, the reduction of the nutrient load to the Baltic Proper is required to counteract the development of hypoxic and phosphate-rich water in the Baltic Proper, which can form deep water in the Bothnian Sea. The relative importance of these sources to oxygen consumption is difficult to determine from the available data, but the results clearly demonstrate the importance of climate related factors such as temperature, DOC and inflow from adjacent basins for the oxygen status of the sea.

  • 2.
    Algesten, Grete
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Brydsten, Lars
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Jonsson, Per
    Institute of Applied Environmental Research, Stockholm University, Stockholm, Sweden.
    Kortelainen, Pirkko
    Finnish Environment Institute, P.O. Box 140, FIN-00251, Helsinki, Finland.
    Löfgren, Stefan
    Department of Environmental Assessment, SLU, P.O. Box 7050, Uppsala, Sweden.
    Rahm, Lars
    Department of Water and Environmental Studies, Linköping University, SE-58183 Linköping, Sweden.
    Räike, Antti
    Finnish Environment Institute, P.O. Box 140, FIN-00251, Helsinki, Finland.
    Sobek, Sebastian
    Institute for Aquatic Sciences and Water Pollution Control, Swiss Federal Institute of Technology Zurich (ETH), Universitätsstr. 16, CH-8092 Zurich, Switzerland.
    Tranvik, Lars
    Department of Ecology and Evolution, EBC, Uppsala University, SE-752 36 Uppsala, Sweden.
    Wikner, Johan
    Umeå University, Faculty of Science and Technology, Umeå Marine Sciences Centre (UMF).
    Jansson, Mats
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Organic carbon budget for the Gulf of Bothnia2006In: Journal of Marine Systems, ISSN 0924-7963, E-ISSN 1879-1573, Vol. 63, no 3-4, p. 155-161Article in journal (Refereed)
    Abstract [en]

    We calculated input of organic carbon to the unproductive, brackish water basin of the Gulf of Bothnia from rivers, point sources and the atmosphere. We also calculated the net exchange of organic carbon between the Gulf of Bothnia and the adjacent marine system, the Baltic Proper. We compared the input with sinks for organic carbon; permanent incorporation in sediments and mineralization and subsequent evasion of CO2 to the atmosphere. The major fluxes were riverine input (1500 Gg C year− 1), exchange with the Baltic Proper (depending on which of several possible DOC concentration differences between the basins that was used in the calculation, the flux varied between an outflow of 466 and an input of 950 Gg C year 1), sediment burial (1100 Gg C year− 1) and evasion to the atmosphere (3610 Gg C year− 1). The largest single net flux was the emission of CO2 to the atmosphere, mainly caused by bacterial mineralization of organic carbon. Input and output did not match in our budget which we ascribe uncertainties in the calculation of the exchange of organic carbon between the Gulf of Bothnia and the Baltic Proper, and the fact that CO2 emission, which in our calculation represented 1 year (2002) may have been overestimated in comparison with long-term means. We conclude that net heterotrophy of the Gulf of Bothnia was due to input of organic carbon from both the catchment and from the Baltic Proper and that the future degree of net heterotrophy will be sensible to both catchment export of organic carbon and to the ongoing eutrophication of the Baltic Proper.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf