Umeå universitets logga

umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Cheddad, Abbas
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Svensson, Christoffer
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Sharpe, James
    Georgsson, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Ahlgren, Ulf
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Image processing assisted algorithms for optical projection tomography2012Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 31, nr 1, s. 1-15Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Since it was first presented in 2002, optical projection tomography (OPT) has emerged as a powerful tool for the study of biomedical specimen on the mm to cm scale. In this paper, we present computational tools to further improve OPT image acquisition and tomographic reconstruction. More specifically, these methods provide: semi-automatic and precise positioning of a sample at the axis of rotation and a fast and robust algorithm for determination of postalignment values throughout the specimen as compared to existing methods. These tools are easily integrated for use with current commercial OPT scanners and should also be possible to implement in "home made" or experimental setups for OPT imaging. They generally contribute to increase acquisition speed and quality of OPT data and thereby significantly simplify and improve a number of three-dimensional and quantitative OPT based assessments.

  • 2.
    de Pierrefeu, Amicie
    et al.
    NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
    Löfstedt, Tommy
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Hadj-Selem, Fouad
    Energy Transition Institute: VeDeCoM, 78 000 Versailles, France.
    Dubois, Mathieu
    NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
    Jardri, Renaud
    Univ. Lille, CNRS UMR 9193, SCALab, CHU Lille, Pôle de Psychiatrie (unit CURE), 59000 Lille, France.
    Fovet, Thomas
    Univ. Lille, CNRS UMR 9193, SCALab, CHU Lille, Pôle de Psychiatrie (unit CURE), 59000 Lille, France.
    Ciuciu, Philippe
    NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
    Frouin, Vincent
    NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
    Duchesnay, Edouard
    NeuroSpin, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France.
    Structured Sparse Principal Components Analysis With the TV-Elastic Net Penalty2018Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 37, nr 2, s. 396-407Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Principal component analysis (PCA) is an exploratory tool widely used in data analysis to uncover the dominant patterns of variability within a population. Despite its ability to represent a data set in a low-dimensional space, PCA’s interpretability remains limited. Indeed, the components produced by PCA are often noisy or exhibit no visually meaningful patterns. Furthermore, the fact that the components are usually non-sparse may also impede interpretation, unless arbitrary thresholding is applied. However, in neuroimaging, it is essential to uncover clinically interpretable phenotypic markers that would account for the main variability in the brain images of a population. Recently, some alternatives to the standard PCA approach, such as sparse PCA (SPCA), have been proposed, their aim being to limit the density of the components. Nonetheless, sparsity alone does not entirely solve the interpretability problem in neuroimaging, since it may yield scattered andunstable components. We hypothesized that the incorporation of prior information regarding the structure of the data may lead to improved relevance and interpretability of brain patterns. We therefore present a simple extension of the popular PCA framework that adds structured sparsity penalties on the loading vectors in order to identify the few stable regions in the brain images that capture most of the variability. Such structured sparsity can be obtained by combining, e.g., l1 and total variation (TV) penalties, where the TV regularization encodes information on the underlying structure of the data. This paper presents the structured SPCA (denoted SPCA-TV) optimization framework and its resolution. We demonstrate SPCA-TV’s effectiveness and versatility on three different data sets. It can be applied to any kind of structured data, such as, e.g., N-dimensional array images or meshes of cortical surfaces. The gains of SPCA-TV over unstructured approaches (such as SPCA and ElasticNet PCA) or structured approach (such as GraphNet PCA) are significant, since SPCA-TV reveals the variability within a data set in the form of intelligible brain patterns that are easier to interpret and more stable across different samples.

  • 3.
    Garpebring, Anders
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Östlund, Nils
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Karlsson, Mikael
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    A novel estimation method for physiological parameters in dynamic contrast-enhanced MRI: application of a distributed parameter model using Fourier-domain calculations2009Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 28, nr 9, s. 1375-1383Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dynamic contrast-enhanced magnetic resonance imaging (MRI) is a promising tool in the evaluation of tumor physiology. From rapidly acquired images and a model for contrast agent pharmacokinetics, physiological parameters are derived. One pharmacokinetic model, the tissue homogeneity model, enables estimation of both blood flow and vessel permeability together with parameters that describe blood volume and extracellular extravascular volume fraction. However, studies have shown that parameter estimation with this model is unstable. Therefore, several initial guesses are needed for accurate estimates, which makes the estimation slow. In this study a new estimation algorithm for the tissue homogeneity model, based on Fourier domain calculations, was derived and implemented as a Matlab program. The algorithm was tested with Monte-Carlo simulations and the results were compared to an existing method that uses the adiabatic approximation. The algorithm was also tested on data from a metastasis in the brain. The comparison showed that the new algorithm gave more accurate results on the 2.5th and 97.5th percentile levels, for instance the error in blood volume was reduced by 21%. In addition, the time needed for the computations was reduced with a factor 25. It was concluded that the new algorithm can be used to speed up parameter estimation while accuracy can be gained at the same time.

  • 4.
    Hadj-Selem, Fouad
    et al.
    Energy Transition Institute VeDeCoM, Versailles, France.
    Löfstedt, Tommy
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Dohmatob, Elvis
    PARIETAL Team, INRIA/CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
    Frouin, Vincent
    NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
    Dubois, Mathieu
    NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
    Guillemot, Vincent
    NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
    Duchesnay, Edouard
    NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
    Continuation of Nesterov's Smoothing for Regression With Structured Sparsity in High-Dimensional Neuroimaging2018Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 37, nr 11, s. 2403-2413Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Predictive models can be used on high-dimensional brain images to decode cognitive states or diagnosis/prognosis of a clinical condition/evolution. Spatial regularization through structured sparsity offers new perspectives in this context and reduces the risk of overfitting the model while providing interpretable neuroimaging signatures by forcing the solution to adhere to domain-specific constraints. Total variation (TV) is a promising candidate for structured penalization: it enforces spatial smoothness of the solution while segmenting predictive regions from the background. We consider the problem of minimizing the sum of a smooth convex loss, a non-smooth convex penalty (whose proximal operator is known) and a wide range of possible complex, non-smooth convex structured penalties such as TV or overlapping group Lasso. Existing solvers are either limited in the functions they can minimize or in their practical capacity to scale to high-dimensional imaging data. Nesterov’s smoothing technique can be used to minimize a large number of non-smooth convex structured penalties. However, reasonable precision requires a small smoothing parameter, which slows down the convergence speed to unacceptable levels. To benefit from the versatility of Nesterov’s smoothing technique, we propose a first order continuation algorithm, CONESTA, which automatically generates a sequence of decreasing smoothing parameters. The generated sequence maintains the optimal convergence speed toward any globally desired precision. Our main contributions are: gap to probe the current distance to the global optimum in order to adapt the smoothing parameter and the To propose an expression of the duality convergence speed. This expression is applicable to many penalties and can be used with other solvers than CONESTA. We also propose an expression for the particular smoothing parameter that minimizes the number of iterations required to reach a given precision. Furthermore, we provide a convergence proof and its rate, which is an improvement over classical proximal gradient smoothing methods. We demonstrate on both simulated and high-dimensional structural neuroimaging data that CONESTA significantly outperforms many state-of-the-art solvers in regard to convergence speed and precision.

  • 5. Naik, Naren
    et al.
    Patil, Nishigandha
    Yadav, Yamini
    Eriksson, Jerry
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Pradhan, Asima
    Fully Nonlinear SP3 Approximation Based Fluorescence Optical Tomography2017Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 36, nr 11, s. 2308-2318Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In fluorescence optical tomography, many works in the literature focus on the linear reconstruction problem to obtain the fluorescent yield or the linearized reconstruction problem to obtain the absorption coefficient. The nonlinear reconstruction problem, to reconstruct the fluorophore absorption coefficient, is of interest in imaging studies as it presents the possibility of better reconstructions owing to a more appropriate model. Accurate and computationally efficient forward models are also critical in the reconstruction process. The SPN approximation to the radiative transfer equation (RTE) is gaining importance for tomographic reconstructions owing to its computational advantages over the full RTE while being more accurate and applicable than the commonly used diffusion approximation. This paper presents Gauss-Newton-based fully nonlinear reconstruction for the SP3 approximated fluorescence optical tomography problem with respect to shape as well as the conventional finite-element method-based representations. The contribution of this paper is the Frechet derivative calculations for this problem and demonstration of reconstructions in both representations. For the shape reconstructions, radial-basis-function represented level-set-based shape representations are used. We present reconstructions for tumor-mimicking test objects in scattering and absorption dominant settings, respectively, for moderately noisy data sets in order to demonstrate the viability of the formulation. Comparisons are presented between the nonlinear and linearized reconstruction schemes in an element wise setting to illustrate the benefits of using the former especially for absorption dominant media.

  • 6.
    Vu, Minh Hoang
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Löfstedt, Tommy
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Nyholm, Tufve
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Sznitman, Raphael
    ARTORG Center, University of Bern, 3008 Bern, Switzerland.
    A Question-Centric Model for Visual Question Answering in Medical Imaging2020Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 39, nr 9, s. 2856-2868Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Deep learning methods have proven extremely effective at performing a variety of medical image analysis tasks. With their potential use in clinical routine, their lack of transparency has however been one of their few weak points, raising concerns regarding their behavior and failure modes. While most research to infer model behavior has focused on indirect strategies that estimate prediction uncertainties and visualize model support in the input image space, the ability to explicitly query a prediction model regarding its image content offers a more direct way to determine the behavior of trained models. To this end, we present a novel Visual Question Answering approach that allows an image to be queried by means of a written question. Experiments on a variety of medical and natural image datasets show that by fusing image and question features in a novel way, the proposed approach achieves an equal or higher accuracy compared to current methods.

  • 7.
    Vu, Minh Hoang
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Norman, Gabriella
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Nyholm, Tufve
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Löfstedt, Tommy
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    A Data-Adaptive Loss Function for Incomplete Data and Incremental Learning in Semantic Image Segmentation2022Ingår i: IEEE Transactions on Medical Imaging, ISSN 0278-0062, E-ISSN 1558-254X, Vol. 41, nr 6, s. 1320-1330Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In the last years, deep learning has dramatically improved the performances in a variety of medical image analysis applications. Among different types of deep learning models, convolutional neural networks have been among the most successful and they have been used in many applications in medical imaging.

    Training deep convolutional neural networks often requires large amounts of image data to generalize well to new unseen images. It is often time-consuming and expensive to collect large amounts of data in the medical image domain due to expensive imaging systems, and the need for experts to manually make ground truth annotations. A potential problem arises if new structures are added when a decision support system is already deployed and in use. Since the field of radiation therapy is constantly developing, the new structures would also have to be covered by the decision support system.

    In the present work, we propose a novel loss function to solve multiple problems: imbalanced datasets, partially-labeled data, and incremental learning. The proposed loss function adapts to the available data in order to utilize all available data, even when some have missing annotations. We demonstrate that the proposed loss function also works well in an incremental learning setting, where an existing model is easily adapted to semi-automatically incorporate delineations of new organs when they appear. Experiments on a large in-house dataset show that the proposed method performs on par with baseline models, while greatly reducing the training time and eliminating the hassle of maintaining multiple models in practice.

    Ladda ner fulltext (pdf)
    fulltext
1 - 7 av 7
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf