umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Sjödin, Tord
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Matematik och matematisk statistik.
    Bernstein's analyticity theorem for quantum differences2007Ingår i: Czechoslovak Mathematical Journal, ISSN 0011-4642, E-ISSN 1572-9141, Vol. 57, nr 1, s. 67-73Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We consider real valued functions f defined on a subinterval I of the positive real axis and prove that if all of f's quantum differences are nonnegative then f has a power series representation on I. Further, if the quantum differences have fixed sign on I then f is analytic on I.

    Ladda ner fulltext (pdf)
    FULLTEXT01
  • 2.
    Sjödin, Tord
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    On the almost everywhere differentiability of the metric projection on closed sets in lp(ℝn), 2 < p < ∞2018Ingår i: Czechoslovak Mathematical Journal, ISSN 0011-4642, E-ISSN 1572-9141, Vol. 68, nr 143, s. 943-951Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Let F be a closed subset of ℝn and let P(x) denote the metric projection (closest point mapping) of x ∈ ℝn onto F in lp-norm. A classical result of Asplund states that P is (Fréchet) differentiable almost everywhere (a.e.) in ℝn in the Euclidean case p = 2. We consider the case 2 < p < ∞ and prove that the ith component Pi(x) of P(x) is differentiable a.e. if Pi(x) 6= xi and satisfies Hölder condition of order 1/(p−1) if Pi(x) = xi.

1 - 2 av 2
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf