umu.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Nina
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Grip, Helena
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
    Lindvall, Peter
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Koskinen, Lars-Owe D
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Brändström, Helge
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
    Malm, Jan
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Eklund, Anders
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Air transport of patients with intracranial air: computer model of pressure effects2003In: Aviation, Space and Environmental Medicine, ISSN 0095-6562, E-ISSN 1943-4448, Vol. 74, no 2, p. 138-144Article in journal (Refereed)
  • 2.
    Brändström, Helge
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
    Grip, Helena
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Hallberg, Per
    Umeå University, Faculty of Medicine, Department of Radiation Sciences. Umeå University, Faculty of Science and Technology, Centre for Biomedical Engineering and Physics (CMTF).
    Grönlund, Christer
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Ängquist, Karl-Axel
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Giesbrecht, Gordon G
    Hand cold recovery responses before and after 15 months of military training in a cold climate2008In: Aviation, Space and Environmental Medicine, ISSN 0095-6562, E-ISSN 1943-4448, Vol. 79, no 9, p. 904-908Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION: The ability of fingers to rapidly rewarm following cold exposure is a possible indicator of cold injury protection. We categorized the post-cooling hand-rewarming responses of men before and after participation in 15 mo of military training in a cold environment in northern Sweden to determine: 1) if the initial rewarming category was related to the occurrence of local cold injury during training; and 2) if cold training affected subsequent hand-rewarming responses. METHODS: Immersion of the dominant hand in 10 degrees C water for 10 min was performed pre-training on 77 men. Of those, 45 were available for successful post-training retests. Infrared thermography monitored the dorsal hand during 30 min of recovery. Rewarming was categorized as normal, moderate, or slow based on mean fingertip temperature at the end of 30 min of recovery (TFinger,30) and the percentage of time that fingertips were vasodilated (%VD). RESULTS: Cold injury occurrence during training was disproportionately higher in the slow rewarmers (four of the five injuries). Post-training, baseline fingertip temperatures and cold recovery variables increased significantly in moderate and slow rewarmers: TFinger30 increased from 21.9 +/- 4 to 30.4 +/- 6 degrees C (Moderate), and from 17.4 +/- 0 to 22.3 +/- 7 degrees C (Slow); %VD increased from 27.5 +/- 16 to 65.9 +/- 34% (Moderate), and from 0.7 +/- 2 to 31.7 +/- 44% (Slow). CONCLUSIONS: Results of the cold recovery test were related to the occurrence of local cold injury during long-term cold-weather training. Cold training itself improved baseline and cold recovery in moderate and slow rewarmers.

  • 3.
    Lindvall, Peter
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Neurosurgery.
    Roslin, Michael
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Neurosurgery.
    Bergenheim, A Tommy
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Neurosurgery.
    Cerebral metabolism during air transport of patients after surgery for malignant glioma2008In: Aviation, Space and Environmental Medicine, ISSN 0095-6562, E-ISSN 1943-4448, Vol. 79, no 7, p. 700-703Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION: Post-operative air transport of patients following an intracranial procedure is not uncommon. The transport itself may pose a risk, and if there are harmful effects to the brain this should be reflected in the brain metabolism. The aim of this study was to analyze possible alterations in cerebral metabolism that could be caused by air transport.

    METHODS: Four patients with glioblastomas were operated with a biopsy or a craniotomy. During this procedure microdialysis catheters were placed in tumor tissue or brain adjacent to tumor and in normal cerebral tissue. In this study we have analyzed cerebral glucose metabolites (glucose, lactate / pyruvate ratio), glycerol, and glutamate at five time points during a 24-h period including air transport.

    RESULTS: Analyzing mean values, there was a small but significant increase in the lactate/pyruvate ratio from 45.18 to 47.78 in normal cerebral tissue after air transport compared to a previous fasting sample. For tumor tissue there was a small decrease in glucose from 1.04 to 0.92 mmol L(-1) and an increase in glutamate from 13.08 to 19.06 micromol L(-1). There were no other significant differences in the analyzed cerebral metabolites after air transport.

    DISCUSSION: There were only minor differences in levels of cerebral metabolites after air transport compared to a previous fasting sample. Thus it seems that air transportation of the four reported patients did not cause any major cellular damage or metabolic changes as assessed by extracellular glucose, lactate/pyruvate ratio, glycerol, or glutamate.

  • 4.
    Löfdahl, Per
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Andersson, Daniel
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Bennett, Michael
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Pulmonary Medicine.
    Nitrogen narcosis and emotional processing during compressed air breathing2013In: Aviation, Space and Environmental Medicine, ISSN 0095-6562, E-ISSN 1943-4448, Vol. 84, no 1, p. 17-21Article in journal (Refereed)
    Abstract [en]

    Background: Previous studies on nitrogen narcosis have focused on how it affects behavior, performance, and cognitive function. However, little is known about the effects of nitrogen narcosis on the emotional processing of external stimuli. Method: We presented 20 volunteers with images from the International Affective Picture System (IAPS) and categorized as unpleasant, neutral, or pleasant, while sitting in a hyperbaric chamber at the surface (101,3kPa) and at 39 m equivalent depth (496.4 kPa). The participants rated the images along three affective dimensions: valence (intrinsic attractiveness or aversiveness of a stimuli), arousal, and dominance. Results: In the valence dimension there was no signifi cant effect of increased pressure or interaction between increased pressure and image category. There was a signifi cant interaction between image category and the pressure at which the images were viewed in the arousal dimension. The mean arousal rating score for unpleasant stimuli was 0.5 point (on a 9-point scale) lower at hyperbaric conditions and equal arousal rating score for neutral stimuli in general. Discussion: The absence of any effect of pressure in the valence dimension suggests that divers have no impairment in their ability to determine the pleasantness or unpleasantness of different stimuli. Furthermore, this study suggests that the effects of nitrogen narcosis on the emotional processing of external stimuli are primarily evident in the arousal dimension. Although differences in arousal ratings were relatively small in magnitude, even a small alteration in emotional response to external stimuli might be important in the context of deep diving. © Aerospace Medical Association, Alexandria, VA.

  • 5.
    Sehlin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy. Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Brändström, Helge
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
    Winsö, Ola
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
    Haney, Michael
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Anaesthesiology.
    Wadell, Karin
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
    Öhberg, Fredrik
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Simulated flying altitude and performance of continuous positive airway pressure devices2014In: Aviation, Space and Environmental Medicine, ISSN 0095-6562, E-ISSN 1943-4448, Vol. 85, no 11, p. 1092-1099Article in journal (Refereed)
    Abstract [en]

    INTRODUCTION: Continuous positive airway pressure (CPAP) is used in air ambulances to treat patients with impaired oxygenation. Differences in mechanical principles between CPAP devices may affect their performance at different ambient air pressures as will occur in an air ambulance during flight. METHODS: Two different CPAP systems, a threshold resistor device and a flow resistor device, at settings 5 and 10 cm H2O were examined. Static pressure, static airflow and pressure during simulated breathing were measured at ground level and at three different altitudes (2400 m (8 kft), 3000 m (10 kft) and 10700 m (35 kft)). RESULTS: When altitude increased, the performance of the two CPAP systems differed during both static and simulated breathing pressure measurements. With the threshold resistor CPAP, measured pressure levels were close to the preset CPAP level. Static pressure decreased 0.71 ± 0.35 cm H2O, at CPAP 10 cm H2O, comparing ground level and 35 kft. With the flow resistor CPAP, as the altitude increased CPAP produced pressure levels increased. At 35 kft, the increase was 5.13 ± 0.33 cm H2O at CPAP 10 cm H2O. DISCUSSION: The velocity of airflow through the flow resistor CPAP device is strongly influenced by reduced ambient air pressure leading to a higher delivered CPAP effect than the preset CPAP level. Threshold resistor CPAP devices seem to have robust performance regardless of altitude. Thus, the threshold resistor CPAP device is probably more appropriate for CPAP treatment in an air ambulance cabin, where ambient pressure will vary during patient transport.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf