umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Ans, Muhammad
    et al.
    Iqbal, Javed
    Eliasson, Bertil
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Saif, Muhammad Jawwad
    Ayub, Khurshid
    Opto-electronic properties of non-fullerene fused-undecacyclic electron acceptors for organic solar cells2019In: Computational materials science, ISSN 0927-0256, E-ISSN 1879-0801, Vol. 159, p. 150-159Article in journal (Refereed)
    Abstract [en]

    Due to limitations of fullerene based acceptor molecules for solar cell applications, research is recently diverted to explore non-fullerene acceptor molecules. In this regard, four new A-D-A type fused ring electron acceptor molecules (M1, M2, M3 and M4) are evaluated for their opto-electronic properties for transparent organic solar cells. These molecules contain strong electron donor undecacyclic linked with four different acceptor moieties, 2-(3-ethly-5-methylene-4-oxothiazolidin-2-yluidene)malononitrile (M1), 2-(5,6-dicyano-2-methylene-3-oxo -2,3-dihydroindene-1-ylidene)malononitrile (M2), 2-(5-methylene-6-oxo-tetrahydro-1H-cyclopenta-thiophene-4(5H)-ylidene)malononitrile (M3), and 3-ethyl-5-methylene-2-thioxothiazolidin-4-one (M4). The electronic and optical properties of these molecules are compared with the reference molecule R, which is recently reported as excellent non-fullerene based acceptor molecule. Among all molecules, M2 exhibits the maximum red shift where absorption appears 893.5 nm with B3LYP/6-31 + + G(d,p) level of theory due to highly extended conjugation between electron withdrawing end-capped acceptor moieties. The calculated Open circuit voltage (V-oc) of reference molecule R is 1.78 eV with donor polymer PTB7-Th while molecule M2 exhibits the V-oc value of 1.86 eV.

  • 2. Ans, Muhammad
    et al.
    Iqbal, Javed
    Eliasson, Bertil
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Saif, Muhammad Jawwad
    Javed, Hafiz Muhammad Asif
    Ayub, Khurshid
    Designing of non-fullerene 3D star-shaped acceptors for organic solar cells2019In: Journal of Molecular Modeling, ISSN 1610-2940, E-ISSN 0948-5023, Vol. 25, no 5, article id 129Article in journal (Refereed)
    Abstract [en]

    The design and fabrication of solar cells have recently witnessed the exploration of non-fullerene-based acceptor molecules for higher efficiency. In this study, the optical and electronic properties of four new three-dimensional (3D) star-shaped acceptor molecules (M1, M2, M3, and M4) are evaluated for use as acceptor molecules in organic solar cells. These molecules contain a triphenylamine donor core with diketopyrrolopyrrole acceptor arms linked via a thiophene bridge unit. Molecules M1–M4 are characterized by different end-capped acceptor moieties, including 2-(5-methylene-6-oxo-5,6-dihydrocyclopenta-b-thiophen-4-ylidene)malononitrile (M1), 2-(2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (M2), 2-(5-methyl-2-methylene-3-oxo-2,3-dihydroinden-1-ylidene)malononitrile (M3), and 3-methyl-5-methylnene-thioxothiazolidin-4-one (M4). The properties of the newly designed molecules were compared with a well-known reference compound R, which was recently reported as an excellent acceptor molecule for organic solar cells. Molecules M1–M4 exhibit suitable frontier molecular orbital patterns for charge mobility. M2 shows maximum absorption (λmax) at 846.8 nm in dichloromethane solvent, which is ideal for the design of transparent solar cells. A strong electron withdrawing end-capped acceptor causes a red shift in absorption spectra. All molecules are excellent for hole mobility due to a lower value of λh compared to the reference R.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf