umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bayuh Lakew, Ewnetu
    et al.
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Birke, Robert
    Perez, Juan F.
    Elmroth, Erik
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Chen, Lydia Y.
    SmallTail: Scaling Cores and Probabilistic Cloning Requests for Web Systems2018In: 15TH IEEE INTERNATIONAL CONFERENCE ON AUTONOMIC COMPUTING (ICAC 2018), IEEE , 2018, p. 31-40Conference paper (Refereed)
    Abstract [en]

    Users quality of experience on web systems are largely determined by the tail latency, e.g., 95th percentile. Scaling resources along, e.g., the number of virtual cores per VM, is shown to be effective to meet the average latency but falls short in taming the latency tail in the cloud where the performance variability is higher. The prior art shows the prominence of increasing the request redundancy to curtail the latency either in the off-line setting or without scaling-in cores of virtual machines. In this paper, we propose an opportunistic scaler, termed SmallTail, which aims to achieve stringent targets of tail latency while provisioning a minimum amount of resources and keeping them well utilized. Against dynamic workloads, SmallTail simultaneously adjusts the core provisioning per VM and probabilistically replicates requests so as to achieve the tail latency target. The core of SmallTail is a two level controller, where the outer loops controls the core provision per distributed VMs and the inner loop controls the clones in a finer granularity. We also provide theoretical analysis on the steady-state latency for a given probabilistic replication that clones one out of N arriving requests. We extensively evaluate SmallTail on three different web systems, namely web commerce, web searching, and web bulletin board. Our testbed results show that SmallTail can ensure the 95th latency below 1000 ms using up to 53% less cores compared to the strategy of constant cloning, whereas scaling-core only solution exceeds the latency target by up to 70%.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf