umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Brännström, Kristoffer
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Gharibyan, Anna L.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Islam, Tohidul
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Iakovleva, Irina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Nilsson, Lina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Lee, Cheng Choo
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Sandblad, Linda
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Pamrén, Annelie
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Scanning electron microscopy as a tool for evaluating morphology of amyloid structures formed on surface plasmon resonance chips2018In: Data in Brief, E-ISSN 2352-3409, Vol. 19, p. 1166-1170Article in journal (Refereed)
    Abstract [en]

    We demonstrate the use of Scanning Electron microscopy (SEM) in combination with Surface Plasmon Resonance (SPR) to probe and verify the formation of amyloid and its morphology on an SPR chip. SPR is a technique that measures changes in the immobilized weight on the chip surface and is frequently used to probe the formation and biophysical properties of amyloid structures. In this context it is of interest to also monitor the morphology of the formed structures. The SPR chip surface is made of a layer of gold, which represent a suitable material for direct analysis of the surface using SEM. The standard SPR chip used here (CM5-chip, GE Healthcare, Uppsala, Sweden) can easily be disassembled and directly analyzed by SEM. In order to verify the formation of amyloid fibrils in our experimental conditions we analyzed also in-solution produced structures by using Transmission Electron Microscopy (TEM). For further details and experimental findings, please refer to the article published in Journal of Molecular Biology, (Brännström K. et al., 2018) [1].

  • 2.
    Brännström, Kristoffer
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Islam, Tohidul
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Gharibyan, Anna L.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Iakovleva, Irina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Nilsson, Lina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Lee, Cheng Choo
    Sandblad, Linda
    Pamrén, Annelie
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    The Properties of Amyloid-β Fibrils Are Determined by their Path of Formation2018In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, no 13, p. 1940-1949Article in journal (Refereed)
    Abstract [en]

    Fibril formation of the amyloid-β peptide (Aβ) follows a nucleation-dependent polymerization process and is associated with Alzheimer's disease. Several different lengths of Aβ are observed in vivo, but Aβ1-40 and Aβ1-42 are the dominant forms. The fibril architectures of Aβ1-40 and Aβ1-42 differ and Aβ1-42 assemblies are generally considered more pathogenic. We show here that monomeric Aβ1-42 can be cross-templated and incorporated into the ends of Aβ1-40 fibrils, while incorporation of Aβ1-40 monomers into Aβ1-42 fibrils is very poor. We also show that via cross-templating incorporated Aβ monomers acquire the properties of the parental fibrils. The suppressed ability of Aβ1-40 to incorporate into the ends of Aβ1-42 fibrils and the capacity of Aβ1-42 monomers to adopt the properties of Aβ1-40 fibrils may thus represent two mechanisms reducing the total load of fibrils having the intrinsic, and possibly pathogenic, features of Aβ1-42 fibrils in vivo. We also show that the transfer of fibrillar properties is restricted to fibril-end templating and does not apply to cross-nucleation via the recently described path of surface-catalyzed secondary nucleation, which instead generates similar structures to those acquired via de novo primary nucleation in the absence of catalyzing seeds. Taken together these results uncover an intrinsic barrier that prevents Aβ1-40 from adopting the fibrillar properties of Aβ1-42 and exposes that the transfer of properties between amyloid-β fibrils are determined by their path of formation.

  • 3.
    Nilsson, Lina
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Pamrén, Annelie
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Islam, Tohidul
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Brännström, Kristoffer
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Golchin, Solmaz A.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Pettersson, Nina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Iakovleva, Irina
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Sandblad, Linda
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Gharibyan, Anna L.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Transthyretin Interferes with Aβ Amyloid Formation by Redirecting Oligomeric Nuclei into Non-Amyloid Aggregates2018In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, no 17, p. 2722-2733Article in journal (Refereed)
    Abstract [en]

    The pathological Aβ aggregates associated with Alzheimer's disease follow a nucleation-dependent path of formation. A nucleus represents an oligomeric assembly of Aβ peptides that acts as a template for subsequent incorporation of monomers to form a fibrillar structure. Nuclei can form de novo or via surface-catalyzed secondary nucleation, and the combined rates of elongation and nucleation control the overall rate of fibril formation. Transthyretin (TTR) obstructs Aβ fibril formation in favor of alternative non-fibrillar assemblies, but the mechanism behind this activity is not fully understood. This study shows that TTR does not significantly disturb fibril elongation; rather, it effectively interferes with the formation of oligomeric nuclei. We demonstrate that this interference can be modulated by altering the relative contribution of elongation and nucleation, and we show how TTR's effects can range from being essentially ineffective to almost complete inhibition of fibril formation without changing the concentration of TTR or monomeric Aβ.

1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf