umu.sePublikasjoner
Endre søk
Begrens søket
12 1 - 50 of 65
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Atkin, Owen K
    et al.
    Atkinson, Lindsey J
    Fischer, Rosie A
    Campbell, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Zaragoza-Castells, Joana
    Pitchford, Jon W
    Woodward, F Ian
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Using temperature-dependent changes in leaf scaling relationships to quantitatively account forthermal acclimation of respiration in a coupled global climate-vegetation model2008Inngår i: Global Change Biology, Vol. 14, s. 2709-2726Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [sv]

    The response of plant respiration (R) to temperature is an important component of the biosphere's response to climate change. At present, most global models assume that R increases exponentially with temperature and does not thermally acclimate. Although we now know that acclimation does occur, quantitative incorporation of acclimation into models has been lacking. Using a dataset for 19 species grown at four temperatures (7, 14, 21, and 28 °C), we have assessed whether sustained differences in growth temperature systematically alter the slope and/or intercepts of the generalized log–log plots of leaf R vs. leaf mass per unit leaf area (LMA) and vs. leaf nitrogen (N) concentration. The extent to which variations in growth temperature account for the scatter observed in log–log R–LMA–N scaling relationships was also assessed. We show that thermal history accounts for up to 20% of the scatter in scaling relationships used to predict R, with the impact of thermal history on R–LMA–N generalized scaling relationships being highly predictable. This finding enabled us to quantitatively incorporate acclimation of R into a coupled global climate–vegetation model. We show that accounting for acclimation of R has negligible impact on predicted annual rates of global R, net primary productivity (NPP) or future atmospheric CO2 concentrations. However, our analysis suggests that accounting for acclimation is important when considering carbon fluxes among thermally contrasting biomes (e.g. accounting for acclimation decreases predicted rates of R by up to 20% in high-temperature biomes). We conclude that acclimation of R needs to be accounted for when predicting potential responses of terrestrial carbon exchange to climatic change at a regional level.

  • 2. Atkin, Owen K
    et al.
    Bruhn, Dan
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Tjoelker, Mark G
    Evans Review No. 2: The hot and the cold: unravelling the variable response of plant respiration to temperature2005Inngår i: Functional Plant Biology, Vol. 32, s. 87-105Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    When predicting the effects of climate change, global carbon circulation models that include a positive feedback effect of climate warming on the carbon cycle often assume that (1) plant respiration increases exponentially with temperature (with a constant Q10) and (2) that there is no acclimation of respiration to long-term changes in temperature. In this review, we show that these two assumptions are incorrect. While Q10 does not respond systematically to elevated atmospheric CO2 concentrations, other factors such as temperature, light, and water availability all have the potential to influence the temperature sensitivity of respiratory CO2 efflux. Roots and leaves can also differ in their Q10 values, as can upper and lower canopy leaves. The consequences of such variable Q10 values need to be fully explored in carbon modelling. Here, we consider the extent of variability in the degree of thermal acclimation of respiration, and discuss in detail the biochemical mechanisms underpinning this variability; the response of respiration to long-term changes in temperature is highly dependent on the effect of temperature on plant development, and on interactive effects of temperature and other abiotic factors (e.g. irradiance, drought and nutrient availability). Rather than acclimating to the daily mean temperature, recent studies suggest that other components of the daily temperature regime can be important (e.g. daily minimum and / or night temperature). In some cases, acclimation may simply reflect a passive response to changes in respiratory substrate availability, whereas in others acclimation may be critical in helping plants grow and survive at contrasting temperatures. We also consider the impact of acclimation on the balance between respiration and photosynthesis; although environmental factors such as water availability can alter the balance between these two processes, the available data suggests that temperature-mediated differences in dark leaf respiration are closely linked to concomitant differences in leaf photosynthesis. We conclude by highlighting the need for a greater process-based understanding of thermal acclimation of respiration if we are to successfully predict future ecosystem CO2 fluxes and potential feedbacks on atmospheric CO2 concentrations.

  • 3.
    Atkin, Owen K
    et al.
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Sherlock, David
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Fitter, Alastair H
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Jarvis, Susan
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Hughes, John K
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Campbell, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hodge, Angela
    Department of Biology, The University of York, PO Box 373, York YO10 5YW, UK.
    Temperature dependence of respiration in roots colonized by arbuscular mycorrhizal fungi2009Inngår i: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 182, nr 1, s. 188-199Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    * The arbuscular mycorrhizal (AM) symbiosis is ubiquitous, and the fungus represents a major pathway for carbon movement in the soil-plant system. Here, we investigated the impacts of AM colonization of Plantago lanceolata and temperature on the regulation of root respiration (R). * Warm-grown AM plants exhibited higher rates of R than did nonAM plants, irrespective of root mass. AM plants exhibited higher maximal rates of R (R(max)-R measured in the presence of an uncoupler and exogenous substrate) and greater proportional use of R(max) as a result of increased energy demand and/or substrate supply. The higher R values exhibited by AM plants were not associated with higher maximal rates of cytochrome c oxidase (COX) or protein abundance of either the COX or the alternative oxidase. * Arbuscular mycorrhizal colonization had no effect on the short-term temperature dependence (Q(10)) of R. Cold-acclimated nonAM plants exhibited higher rates of R than their warm-grown nonAM counterparts. By contrast, chilling had a negligible effect on R of AM-plants. Thus, AM plants exhibited less cold acclimation than their nonAM counterparts. * Overall, these results highlight the way in which AM colonization alters the underlying components of respiratory metabolism and the response of root R to sustained changes in growth temperature.

  • 4. Atkinson, Lindsey J
    et al.
    Campbell, Catherine D
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Zaragoza-Castells, Joana
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Atkin, Owen K
    Impact of growth temperature on scaling relationships linking photosynthetic metabolism to leaf functional traits2010Inngår i: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 24, nr 6, s. 1181-1191Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    1. Scaling relationships linking photosynthesis (A) to leaf traits are important for predicting vegetation patterns and plant-atmosphere carbon fluxes. Here, we investigated the impact of growth temperature on such scaling relationships.

    2. We assessed whether changes in growth temperature systematically altered the slope and/or intercepts of log-log plots of A vs leaf mass per unit leaf area (LMA), nitrogen and phosphorus concentrations for 19 contrasting plant species grown hydroponically at four temperatures (7, 14, 21 and 28 degrees C) in controlled environment cabinets. Responses of 21 degrees C-grown pre-existing (PE) leaves experiencing a 10 day growth temperature (7, 14, 21 and 28 degrees C) treatment, and newly-developed (ND) leaves formed at each of the four new growth temperatures, were quantified. Irrespective of the growth temperature treatment, rates of light-saturated photosynthesis (A) were measured at 21 degrees C.

    3. Changes in growth temperature altered the scaling between A and leaf traits in pre-existing (PE) leaves, with thermal history accounting for up to 17% and 31% of the variation on a mass and area basis, respectively. However, growth temperature played almost no role in accounting for scatter when comparisons were made of newly-developed (ND) leaves that form at each growth temperature.

    4. Photosynthetic nitrogen and phosphorus use efficiency (PNUE and PPUE, respectively) decreased with increasing LMA. No systematic differences in temperature-mediated reductions in PNUE or PPUE of PE leaves were found among species.

    5. Overall, these results highlight the importance of leaf development in determining the effects of sustained changes in growth temperature on scaling relationships linking photosynthesis to other leaf traits.

  • 5.
    Benedict, Catherine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Geisler, Matt
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Huner, Norman
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Consensus by democracy. Using meta-analyses of microarray and genomic data to model the cold acclimation signaling pathway in Arabidopsis.2006Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 141, nr 4, s. 1219-1232Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The whole-genome response of Arabidopsis (Arabidopsis thaliana) exposed to different types and durations of abiotic stress has now been described by a wealth of publicly available microarray data. When combined with studies of how gene expression is affected in mutant and transgenic Arabidopsis with altered ability to transduce the low temperature signal, these data can be used to test the interactions between various low temperature-associated transcription factors and their regulons. We quantized a collection of Affymetrix microarray data so that each gene in a particular regulon could vote on whether a cis-element found in its promoter conferred induction (+1), repression (–1), or no transcriptional change (0) during cold stress. By statistically comparing these election results with the voting behavior of all genes on the same gene chip, we verified the bioactivity of novel cis-elements and defined whether they were inductive or repressive. Using in silico mutagenesis we identified functional binding consensus variants for the transcription factors studied. Our results suggest that the previously identified ICEr1 (induction of CBF expression region 1) consensus does not correlate with cold gene induction, while the ICEr3/ICEr4 consensuses identified using our algorithms are present in regulons of genes that were induced coordinate with observed ICE1 transcript accumulation and temporally preceding genes containing the dehydration response element. Statistical analysis of overlap and cis-element enrichment in the ICE1, CBF2, ZAT12, HOS9, and PHYA regulons enabled us to construct a regulatory network supported by multiple lines of evidence that can be used for future hypothesis testing.

  • 6.
    Benedict, Catherine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Skinner, J. S.
    Meng, R.
    Chang, Y.
    Bhalerao, R.
    Finn, C.
    Chen, T. H. H.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    The Role of the CBF-dependent Signalling Pathway in Woody Perennials2006Inngår i: Cold Hardiness in Plants: Molecular Genetics, Cell Biology and Physiology / [ed] T Chen, M Uemura, S Fujikawa, Wallingford: CABI Publishing, 2006, s. 167-180Kapittel i bok, del av antologi (Annet vitenskapelig)
  • 7.
    Benedict, Catherine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Skinner, Jeffrey S
    Meng, Rengong
    Chang, Yongjian
    Bhalerao, Rishikesh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman P A
    Finn, Chad E
    Chen, Tony H H
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    The CBF1-dependent low temperature signalling pathway, regulon and increase in freeze tolerance are conserved in Populus spp2006Inngår i: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 29, nr 7, s. 1259-1272Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The meristematic tissues of temperate woody perennials must acclimate to freezing temperatures to survive the winter and resume growth the following year. To determine whether the C-repeat binding factor (CBF) family of transcription factors contributing to this process in annual herbaceous species also functions in woody perennials, we investigated the changes in phenotype and transcript profile of transgenic Populus constitutively expressing CBF1 from Arabidopsis (AtCBF1). Ectopic expression of AtCBF1 was sufficient to significantly increase the freezing tolerance of non-acclimated leaves and stems relative to wild-type plants. cDNA microarray experiments identified genes up-regulated by ectopic AtCBF1 expression in Populus, demonstrated a strong conservation of the CBF regulon between Populus and Arabidopsis and identified differences between leaf and stem regulons. We studied the induction kinetics and tissue specificity of four CBF paralogues identified from the Populus balsamifera subsp. trichocarpa genome sequence (PtCBFs). All four PtCBFs are cold-inducible in leaves, but only PtCBF1 and PtCBF3 show significant induction in stems. Our results suggest that the central role played by the CBF family of transcriptional activators in cold acclimation of Arabidopsis has been maintained in Populus. However, the differential expression of the PtCBFs and differing clusters of CBF-responsive genes in annual (leaf) and perennial (stem) tissues suggest that the perennial-driven evolution of winter dormancy may have given rise to specific roles for these 'master-switches' in the different annual and perennial tissues of woody species.

  • 8. Campbell, Catherine
    et al.
    Atkinson, Lindsey
    Zaragoza-Castells, Joana
    Lundmark, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Atkin, Owen
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Acclimation of photosynthesis and respiration in response to change in growth temperature is asynchronous across plant functional groups2007Inngår i: New Phytologist, ISSN 0028-646XArtikkel i tidsskrift (Fagfellevurdert)
  • 9. Campbell, Catherine
    et al.
    Atkinson, Lindsey
    Zaragoza-Castells, Joana
    Lundmark, Maria
    Atkin, Owen
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group.2007Inngår i: New Phytologist, ISSN 0028-646X, Vol. 176, nr 2, s. 375-89Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    • Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28°C).

    • When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups.

    • Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle.

    • Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.

  • 10. Campbell, D
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Clarke, A K
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation1998Inngår i: Microbiology and molecular biology reviews, ISSN 1092-2172, E-ISSN 1098-5557, Vol. 62, nr 3, s. 667-+Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters F-V/F-M. F-V'/F-M', q(p),q(N), NPQ, and phi PS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters cart be used to estimate the electron transport rate at the acclimated growth light intensity.

  • 11. Ciereszko, I
    et al.
    Johansson, H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kleczkowski, L.A.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis.2001Inngår i: Planta, ISSN 0032-0935, Vol. 212, nr 4, s. 598-605Artikkel i tidsskrift (Fagfellevurdert)
  • 12. CLARKE, AK
    et al.
    HURRY, VM
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    2 FUNCTIONALLY DISTINCT FORMS OF THE PHOTOSYSTEM-II REACTION-CENTER PROTEIN D1 IN THE CYANOBACTERIUM SYNECHOCOCCUS SP PCC 79421993Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 90, nr 24, s. 11985-11989Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The cyanobacterium Synechococcus sp. PCC 7942 possesses a small psbA multigene family that codes for two distinct forms of the photosystem II reaction-center protein D1 (D1:1 and D1:2). We showed previously that the normally predominant D1 form (D1:1) was rapidly replaced with the alternative D1:2 when cells adapted to a photon irradiance of 50 mumol/m-2.s-1 are shifted to 500 mumol.m-2.s-1 and that this interchange was readily reversible once cells were allowed to recover under the original growth conditions. By using the psbA inactivation mutants R2S2C3 and R2K1 (which synthesize only D1:1 and D1:2, respectively), we showed that this interchange between D1 forms was essential for limiting the degree of photoinhibition as well as enabling a rapid recovery of photosynthesis. In this report, we have extended these findings by examining whether any intrinsic functional differences exist between the two D1 forms that may afford increased resistance to photoinhibition. Initial studies on the rate of D1 degradation at three photon-irradiances (50, 200, and 500 mumol.m-2.s-1) showed that the rates of degradation for both D1 forms increase with increasing photon flux density but that there was no significant difference between D1:1 and D1:2. Analysis of light-response curves for oxygen evolution for the mutants R2S2C3 and R2K1 revealed that cells with photosystem II reaction centers containing D1:2 have a higher apparent quantum yield (almost-equal-to 25%) than cells possessing D1:1. Further studies using chlorophyll a fluorescence measurements confirmed that R2K1 has a higher photochemical yield than R2S2C3; that is, a more efficient conversion of excitation energy from photon absorption into photochemistry. We believe that the higher photochemical efficiency of reaction centers containing D1:2 is causally related to the preferential induction of D1:2 at high light and thus may be an integral component of the protection mechanism within Synechococcus sp. PCC 7942 against photoinhibition.

  • 13. Druart, Nathalie
    et al.
    Rodriguez-Buey, Marisa
    Barron-Gafford, Greg
    Sjödin, Andreas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bhalerao, Rishikesh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Molecular targets of elevated [CO2] in leaves and stems of Populus deltoides: implications for future tree growth and carbon sequestration2006Inngår i: Functional Plant Biology, Vol. 33, s. 121-131Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We report the first comprehensive analysis of the effects of elevated [CO2] on gene expression in source leaf and stem sink tissues in woody plants. We have taken advantage of coppiced Populus deltoides (Bartr.) stands grown for 3 years under three different and constant elevated [CO2] in the agriforest mesocosms of Biosphere 2. Leaf area per tree was doubled by elevated [CO2] but although growth at 800 v. 400 µmol mol–1 CO2 resulted in a significant increase in stem biomass, growth was not stimulated at 1200 µmol mol–1 CO2. Growth under elevated [CO2] also resulted in significant increases in stem wood density. Analysis of expression data for the 13 490 clones present on POP1 microarrays revealed 95 and 277 [CO2]-responsive clones in leaves and stems respectively, with the response being stronger at 1200 µmol mol–1. When these [CO2]-responsive genes were assigned to functional categories, metabolism-related genes were the most responsive to elevated [CO2]. However within this category, expression of genes relating to bioenergetic processes was unchanged in leaves whereas the expression of genes for storage proteins and of those involved in control of wall expansion was enhanced. In contrast to leaves, the genes up-regulated in stems under elevated [CO2] were primarily enzymes responsible for lignin formation and polymerisation or ethylene response factors, also known to induce lignin biosynthesis. Concomitant with this enhancement of lignin biosynthesis in stems, there was a pronounced repression of genes related to cell wall formation and cell growth. These changes in gene expression have clear consequences for long-term carbon sequestration, reducing the carbon-fertilisation effect, and the potential for increased lignification may negatively impact on future wood quality for timber and paper production.

  • 14. Goulas, Estelle
    et al.
    Schubert, Maria
    Kieselbach, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Kleczkowski, Leszek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Schröder, Wolfgang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    The chloroplast lumen and stromal proteomes of Arabidopsis thaliana show differential sensitivity to short- and long-term exposure to low temperature.2006Inngår i: Plant Journal, ISSN 0960-7412, Vol. 47, nr 5, s. 720-34Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cold acclimation and over-wintering by herbaceous plants are energetically expensive and are dependent on functional plastid metabolism. To understand how the stroma and the lumen proteomes adapt to low temperatures, we have taken a proteomic approach (difference gel electrophoresis) to identify proteins that changed in abundance in Arabidopsis chloroplasts during cold shock (1 day), and short- (10 days) and long-term (40 days) acclimation to 5°C. We show that cold shock (1 day) results in minimal change in the plastid proteomes, while short-term (10 days) acclimation results in major changes in the stromal but few changes in the lumen proteome. Long-term acclimation (40 days) results in modulation of the proteomes of both compartments, with new proteins appearing in the lumen and further modulations in protein abundance occurring in the stroma. We identify 43 differentially displayed proteins that participate in photosynthesis, other plastid metabolic functions, hormone biosynthesis and stress sensing and signal transduction. These findings not only provide new insights into the cold response and acclimation of Arabidopsis, but also demonstrate the importance of studying changes in protein abundance within the relevant cellular compartment.

  • 15. Guy, Charles
    et al.
    Porat, Ron
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Plant cold and abiotic stress gets hot2006Inngår i: Physiologia Plantarum, Vol. 126, s. 1-4Artikkel i tidsskrift (Fagfellevurdert)
  • 16. Hendrickson, Luke
    et al.
    Vlcková, Alexandra
    Selstam, Eva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Cold acclimation of the Arabidopsis dgd1 mutant results in recovery from photosystem I-limited photosynthesis.2006Inngår i: FEBS Letters, ISSN 0014-5793, Vol. 580, nr 20, s. 4959-68Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We compared the thylakoid membrane composition and photosynthetic properties of non- and cold-acclimated leaves from the dgd1 mutant (lacking >90% of digalactosyl–diacylglycerol; DGDG) and wild type (WT) Arabidopsis thaliana. In contrast to warm grown plants, cold-acclimated dgd1 leaves recovered pigment-protein pools and photosynthetic function equivalent to WT. Surprisingly, this recovery was not correlated with an increase in DGDG. When returned to warm temperatures the severe dgd1 mutant phenotype reappeared. We conclude that the relative recovery of photosynthetic activity at 5 °C resulted from a temperature/lipid interaction enabling the stable assembly of PSI complexes in the thylakoid.

  • 17. Hjältén, Joakim
    et al.
    Lindau, Anna
    Wennström, Anders
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Blomberg, Patrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Witzell, Johanna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ericson, Lars
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap.
    Unintentional changes of defence traits in GM trees can influence plant-herbivore interactions2007Inngår i: Basic and Applied Ecology, Vol. 8, nr 3, s. 434-443Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    GM trees hold promises of increased quality and yield and reduced use of herbicides and pesticides but could also have ecological consequences. We investigated whether modification of a non-defensive trait unintentionally influenced plant traits important for plant-herbivore interactions. We found that over-expression of sucrose phosphate synthase (SPS), which is known to increase mesophyll sucrose content and biomass production in GM aspens, also unintentionally induced changes in the concentration of plant phenolics and nitrogen. One of the GM lines, SPS33A, had higher concentrations of salicin, tremuloidin, condensed tannins and nitrogen and lower concentrations of coumaric acid and four flavonoids compared with the isogenic wild type. Line SPS33A was also utilized less by the leaf-beetle Phratora vitellinae than the isogenic wild type. Ecological consequences such as this are not specific to GM trees or GM plants but can occur as a result of the introduction of all introduced new varieties of crops or trees. Nevertheless, the results underline the need to consider these unexpected effects when evaluating both the potential benefits and the potential risks with GM plants, and highlight the need to establish and implement comprehensive product-by-product evaluation protocols for GM plants.

  • 18. Hogberg, Mona N.
    et al.
    Briones, Maria J. I.
    Keel, Sonja G.
    Metcalfe, Daniel B.
    Campbell, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Midwood, Andrew J.
    Thornton, Barry
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Linder, Sune
    Nasholm, Torgny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hogberg, Peter
    Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest2010Inngår i: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 187, nr 2, s. 485-493Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    P>The flux of carbon from tree photosynthesis through roots to ectomycorrhizal (ECM) fungi and other soil organisms is assumed to vary with season and with edaphic factors such as nitrogen availability, but these effects have not been quantified directly in the field. To address this deficiency, we conducted high temporal-resolution tracing of 13C from canopy photosynthesis to different groups of soil organisms in a young boreal Pinus sylvestris forest. There was a 500% higher below-ground allocation of plant C in the late (August) season compared with the early season (June). Labelled C was primarily found in fungal fatty acid biomarkers (and rarely in bacterial biomarkers), and in Collembola, but not in Acari and Enchytraeidae. The production of sporocarps of ECM fungi was totally dependent on allocation of recent photosynthate in the late season. There was no short-term (2 wk) effect of additions of N to the soil, but after 1 yr, there was a 60% reduction of below-ground C allocation to soil biota. Thus, organisms in forest soils, and their roles in ecosystem functions, appear highly sensitive to plant physiological responses to two major aspects of global change: changes in seasonal weather patterns and N eutrophication.

  • 19. Huner, Norman P. A.
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sarhan, F
    Energy balance and acclimation to light and cold1998Inngår i: Trends in Plant Science, ISSN 1360-1385, E-ISSN 1878-4372, Vol. 3, nr 6, s. 224-230Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Changes in environmental conditions such as light intensity or temperature result in an imbalance between the light energy absorbed through photochemistry versus the energy utilized through metabolism. Such an energy imbalance is sensed through alterations in photosystem II excitation pressure, which reflects the relative reduction state of the photosystem. Modulation of this novel, chloroplastic redox signal either by excess light or by low temperature initiates a signal transduction pathway. This appears to coordinate photosynthesis-related gene expression and to influence the nuclear expression of a specific cold-acclimation gene, plant morphology and differentiation in cyanobacteria. Thus, in addition to its traditional role in energy transduction, the photosynthetic apparatus might also be an environmental sensor.

  • 20. Huner, Norman P A
    et al.
    Ivanov, Alexander G
    Sane, Prafullachandra Vishnu
    Pocock, T
    Król, Marianna
    Balseris, A
    Rosso, Dominic
    Savitch, Leonid V
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Photoprotection of Photosystem II: Reaction center quenching versus antenna quenching2006Inngår i: Photoprotection, Photoinhibition, Gene Regulation and Environment, Springer , 2006, s. 155-174Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    Photoprotection, Photoinhibition, Gene Regulation, and Environment examines the processes whereby plants monitor environmental conditions and orchestrate their response to change, an ability paramount to the life of all plants. "Excess light", absorbed by the light-harvesting systems of photosynthetic organisms, is an integrative indicator of the environment, communicating the presence of intense light and any conditions unfavorable for growth and photosynthesis. Key plant responses are photoprotection and photoinhibition. In this volume, the dual role of photoprotective responses in the preservation of leaf integrity and in redox signaling networks modulating stress acclimation, growth, and development is addressed. In addition, the still unresolved impact of photoinhibition on plant survival and productivity is discussed. Specific topics include dissipation of excess energy via thermal and other pathways, scavenging of reactive oxygen by antioxidants, proteins key to photoprotection and photoinhibition, peroxidation of lipids, as well as signaling by reactive oxygen, lipid-derived messengers, and other messengers that modulate gene expression. Approaches include biochemical, physiological, genetic, molecular, and field studies, addressing intense visible and ultraviolet light, winter conditions, nutrient deficiency, drought, and salinity. This book is directed toward advanced undergraduate students, graduate students, and researchers interested in Plant Ecology, Stress Physiology, Plant Biochemistry, Integrative Biology, and Photobiology.

  • 21. HUNER, NPA
    et al.
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HURRY, VM
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    KROL, M
    FALK, S
    GRIFFITH, M
    PHOTOSYNTHESIS, PHOTOINHIBITION AND LOW-TEMPERATURE ACCLIMATION IN COLD TOLERANT PLANTS1993Inngår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 37, nr 1, s. 19-39Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cold acclimation requires adjustment to a combination of light and low temperature, conditions which are potentially photoinhibitory. The photosynthetic response of plants to low temperature is dependent upon time of exposure and the developmental history of the leaves. Exposure of fully expanded leaves of winter cereals to short-term, low temperature shifts inhibits whereas low temperature growth stimulates electron transport capacity and carbon assimilation. However, the photosynthetic response to low temperature is clearly species and cultivar dependent. Winter annuals and algae which actively grow and develop at low temperature and moderate irradiance acquire a resistance to irradiance 5- to 6-fold higher than their growth irradiance. Resistance to short-term photoinhibition (hours) in winter cereals is a reflection of the increased capacity to keep Q(A) oxidized under high light conditions and low temperature. This is due to an increased capacity for photosynthesis. These characteristics reflect photosynthetic acclimation to low growth temperature and can be used to predict the freezing tolerance of cereals. It is proposed that the enhanced photosynthetic capacity reflects an increased flux of fixed carbon through to sucrose in source tissue as a consequence of the combined effects of increased storage of carbohydrate as fructans in the vacuole of leaf mesophyll cells and an enhanced export to the crown due to its increased sink activity. Long-term exposure (months) of cereals to low temperature photoinhibition indicates that this reduction of photochemical efficiency of PS II represents a stable, long-term down regulation of PS II to match the energy requirements for CO2 fixation. Thus, photoinhibition in vivo should be viewed as the capacity of plants to adjust photosynthetically to the prevailing environmental conditions rather than a process which necessarily results in damage or injury to plants. Not all cold tolerant, herbaceous annuals use the same mechanism to acquire resistance to photoinhibition. In contrast to annuals and algae, overwintering evergreens become dormant during the cold hardening period and generally remain susceptible to photoinhibition. It is concluded that the photosynthetic response to low temperatures and susceptibility to photoinhibition are consequences of the overwintering strategy of the plant species.

  • 22.
    Hurry, Vaughan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Igamberdiev, Abir U
    Keerberg, Olav
    Pärnik, Tiit
    Atkin, Owen K
    Zaragoza-Costells, Joana
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Respiration in photosynthetic cells2005Inngår i: Plant Respiration: From cell to ecosystem, Springer , 2005, s. 43-61Kapittel i bok, del av antologi (Annet vitenskapelig)
    Abstract [en]

    Respiration in plants, as in all living organisms, is essential to provide metabolic energy and carbon skeletons for growth and maintenance. As such, respiration is an essential component of a plant’s carbon budget. Depending on species and environmental conditions, it consumes 25-75% of all the carbohydrates produced in photosynthesis – even more at extremely slow growth rates. Respiration in plants can also proceed in a manner that produces neither metabolic energy nor carbon skeletons, but heat. This type of respiration involves the cyanide-resistant, alternative oxidase; it is unique to plants, and resides in the mitochondria. The activity of this alternative pathway can be measured based on a difference in fractionation of oxygen isotopes between the cytochrome and the alternative oxidase. Heat production is important in some flowers to attract pollinators; however, the alternative oxidase also plays a major role in leaves and roots of most plants. A common thread throughout this volume is to link respiration, including alternative oxidase activity, to plant functioning in different environments.

  • 23.
    Hurry, Vaughan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Keerberg, O
    Parnik, T
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Cold-hardening results in increased activity of enzymes involved in carbon metabolism in leaves of winter rye (Secale-Cereale L)1995Inngår i: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 195, nr 4, s. 554-562Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mu mol O-2.m(-2).s(-1) when leaves were transferred from 20 to 5 degrees C for 30 min. Following cold-hardening at 5 degrees C for ten weeks, photosynthesis recovered to 15.05 mu mol O-2.m(-2).s(-1), comparable to the non-hardened rate at 20 degrees C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5 degrees C. The large increase in esterified phosphate in cold-hardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5 degrees C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.

  • 24.
    Hurry, Vaughan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Keerberg, O
    Parnik, T
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Effect of cold hardening on the components of respiratory decarboxylation in the light and in the dark in leaves of winter rye1996Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 111, nr 3, s. 713-719Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the dark, all decarboxylation reactions are associated with the oxidase reactions of mitochondrial electron transport. In the light, photorespiration is also active in photosynthetic cells. In winter rye (Secale cereale L.), cold hardening resulted in a P-fold increase in the rate of dark respiratory CO2 release from leaves compared with nonhardened (NH) controls. However, in the light, NH and cold-hardened (CH) leaves had comparable rates of oxidase decarboxylation and total intracellular decarboxylation, Furthermore, whereas CH leaves showed similar rates of total oxidase decarboxylation in the dark and light, NH leaves showed a 2-fold increase in total oxidase activity in the light compared with the dark. Light suppressed oxidase decarboxylation of end products of photosynthesis 2-fold in NH leaves and 3-fold in CH leaves in air. However, in high-CO2, light did not suppress the oxidase decarboxylation of end products. Thus, the decrease in oxidase decarboxylation of end products observed in the light and in air reflected glycolate-cycle-related inhibition of tricarboxylic acid cycle activity. We also showed that the glycolate cycle was involved in the decarboxylation of the end products of photosynthesis in both NH and CH leaves, suggesting a flow of fixed carbon out of the starch pool in the light.

  • 25.
    Hurry, Vaughan M.
    et al.
    Cooperative Research Centre for Plant Science, The Australian National University, Canberra ACT 2601, Australia.
    Strand, Åsa
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Tobiaeson, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Cold hardening of spring and winter-wheat and rape results in differential-effects on growth, carbon metabolism, and carbohydrate content1995Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 109, nr 2, s. 697-706Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of long-term (months) exposure to low temperature (5 degrees C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a P-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allows these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserves to support basal metabolism and regrowth in the spring.

  • 26.
    Hurry, Vaughan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Malmberg, Gunilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Effects of a short-term shift to low-temperature and of long-term cold hardening on photosynthesis and ribulose-1,5-bisphosphate carboxylase oxygenase and sucrose-phosphate synthase activity in leabves of winter rye (Secale-Cereale L)1994Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 106, nr 3, s. 983-990Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of a short-term (hours) shift to low temperature (5 degrees C) and long-term (months) cold hardening on photosynthesis and carbon metabolism was studied in winter rye (Secale cereale L. cv Musketeer), Cold-hardened plants grown at 5 degrees C exhibited 25% higher in situ CO2 exchange rates than nonhardened plants grown at 24 degrees C. Cold-hardened plants maintained these high rates throughout the day, in contrast to nonhardened plants, which showed a gradual decline in photosynthesis after 3 h. Associated with the increase in photosynthetic capacity following cold hardening was an increase in ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose phosphate synthase activity and 3- to 4-fold increases in the pools of associated metabolites. Leaves of nonhardened plants shifted overnight to 5 degrees C required 9 h in the light at 5 degrees C before maximum rates of photosynthesis were reached. The gradual increase in photosynthesis in leaves shifted to 5 degrees C was correlated with a sharp decline in the 3-phosphoglycerate/triose phosphate ratio and by an increase in the ribulose bisphosphate/3-phosphoglycerate ratio, indicating the gradual easing of aninorganic phosphate-mediated feedback inhibition on photo-synthesis. We suggest that the strong recovery of photosynthesis in winter rye following cold hardening indicates that the buildup of photosynthetic enzymes, as well as those involved in sucrose synthesis, is an adaptive response that enables these plants to maximize the production of sugars that have both cryoprotective and storage functions that are critical to the performance of these cultivars during over-wintering.

  • 27.
    Hurry, Vaughan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Tobiaeson, M
    Kromer, S
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Mitochondria contribute to increased photosynthetic capacity of leaves of winter rye (Secale-Cereale L) following cold-hardening1995Inngår i: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 18, nr 1, s. 69-76Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cold-hardening of winter rye (Secale cereale L. cv. Musketeer) increased dark respiration from -2.2 to -3.9 mu mol O-2 m(-2)s(-1) and doubled light- and CO2-saturated photosynthesis at 20 degrees C from 18.1 to 37.0 mu mol O-2 m(-2) s(-1). We added oligomycin at a concentration that specifically inhibits oxidative phosphorylation to see whether the observed increase in dark respiration reflected an increase in respiration in the light, and whether this contributed to the enhanced photosynthesis of cold-hardened leaves, Oligomycin inhibited light- and CO2-saturated rates of photosynthesis in non-hardened and cold-hardened leaves by 14 and 25%, respectively, and decreased photochemical quenching of chlorophyll a fluorescence to a greater degree in cold-hardened than in non-hardened leaves, These data indicate an increase both in the rate of respiration in the light, and in the importance of respiration to photosynthesis following cold-hardening, Analysis of metabolite pools indicated that oligomycin inhibited photosynthesis by limiting regeneration of ribulose-1,5-bisphosphate, This limitation was particularly severe in cold-hardened leaves, and the resulting low 3-phosphoglycerate pools led to a feed-forward inhibition of sucrose-phosphate synthase activity, Thus, it does not appear that oxidative phosphorylation supports the increase in photosynthetic O-2 evolution following cold-hardening by increasing the availability of cytosolic ATP, The data instead support the hypothesis that the mitochondria function in the light by using the reducing equivalents generated by nan-cyclic photosynthetic electron transport.

  • 28.
    HURRY, VM
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    REDUCED SENSITIVITY TO PHOTOINHIBITION FOLLOWING FROST-HARDENING OF WINTER RYE IS DUE TO INCREASED PHOSPHATE AVAILABILITY1993Inngår i: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 190, nr 4, s. 484-490Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The possibility of a role for phosphate metabolism in the photosynthetic regulation that occurs during frost hardening was investigated in winter rye (Secale cereale L. cv. Musketeer). Leaves of frost-hardened and non-hardened winter rye were studied during photosynthetic induction, and at steady state after being allowed to take up 20 mM orthophosphate through the transpiration stream for 3 h. At the growth irradiance (350 mumol.m-2.s-1) frost-hardening increased the stationary rate Of CO2-dependent O2 evolution by 57% and 25% when measured at 5 and 20-degrees-C, respectively. Frost-hardening also reduced the lag phase to stationary photosynthesis by 40% at 5-degrees-C and decreased the susceptibility of leaves to oscillations during induction and after interruption of the actinic beam during steady-state photosynthesis. These responses are all indicative of increased phosphate availability in frost-hardened leaves. As reported previously by Oquist and Huner (1993, Planta 189, 150-156), frost-hardening also decreased the reduction state of Q(A), the primary, stable quinone acceptor of PSII, and decreased the sensitivity of winter rye to photoinhibition of photosynthesis. Non-hardened rye leaves fed orthophosphate also showed an increased photosynthetic capacity (25% at 20-degrees-C and light saturation), lower reduction state of Q(A), a reduced sensitivity to photoinhibition and lower susceptibility to oscillations resulting from a brief interruption of the actinic light. Thus, the data indicate that phosphate metabolism plays a key role in photosynthetic acclimation of winter rye to low temperatures.

  • 29.
    HURRY, VM
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    KROL, M
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HUNER, NPA
    EFFECT OF LONG-TERM PHOTOINHIBITION ON GROWTH AND PHOTOSYNTHESIS OF COLD-HARDENED SPRING AND WINTER-WHEAT1992Inngår i: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 188, nr 3, s. 369-375Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effect of repeated exposure to high light (1200 mumol . m-2 . s-1 photosynthetic photon flux density, PPFD) at 5-degrees-C was examined in attached leaves of cold-grown spring (cv. Katepwa) and winter (cv. Kharkov) wheat (Triticum aestivum L.) over an eight-week period. Under these conditions, Kharkov winter wheat exhibited a daily reduction of 24% in F(V)/F(M) (the ratio of variable to maximal fluorescence in the dark-adapted state), in contrast to 41% for cold-grown Katepwa spring wheat. Both cultivars were able to recover from this daily suppression of F(V)/F(M) such that the leaves exhibited an average morning F(V)/F(M) of 0.651 +/- 0.004. Fluorescence measurements made under steady-state conditions as a function of irradiance from 60 to 2000 mumol . m-2 . s-1 indicated that the yield of photosystem II (PSII) electron transport under light-saturating conditions was the same for photoinhibited and control cold-grown plants, regardless of cultivar. Repeated daily exposure to high light at low temperature did not increase resistance to short-term photoinhibition, although zeaxanthin levels increased by three- to fourfold. In addition, both cultivars increased the rate of dry-matter accumulation, relative to control plants maintained at 5-degrees-C and 250 mumol . m-2 . s-1 PPFD (10% and 28% for Katepwa and Kharkov, respectively), despite exhibiting suppressed F(V)/F(M) and reduced photon yields for O2 evolution following daily high-light treatments. Thus, although photosynthetic efficiency is suppressed by a long-term, photoinhibitory treatment, light-saturated rates of photosynthesis are sufficiently high during the high-light treatment to offset any reduction in photochemical efficiency of PSII. We suggest that in these cold-tolerant plants, photoinhibition of PSII may represent a long-term, stable, down-regulation of photochemistry to match the overall photosynthetic demand for ATP and reducing equivalents.

  • 30. Högberg, Peter
    et al.
    Högberg, M N
    Göttlicher, S G
    Betson, N R
    Keel, S G
    Metcalfe, D B
    Campbell, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Schindlbacher, A
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Lundmark, Thomas
    Linder, Sune
    Näsholm, Torgny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms.2008Inngår i: New Phytologist, ISSN 0028-646X, Vol. 177, nr 1, s. 220-28Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    • Half of the biological activity in forest soils is supported by recent tree photosynthate, but no study has traced in detail this flux of carbon from the canopy to soil microorganisms in the field.

    • Using 13CO2, we pulse-labelled over 1.5 h a 50-m2 patch of 4-m-tall boreal Pinus sylvestris forest in a 200-m3 chamber.

    • Tracer levels peaked after 24 h in soluble carbohydrates in the phloem at a height of 0.3 m, after 2–4 d in soil respiratory efflux, after 4–7 d in ectomycorrhizal roots, and after 2–4 d in soil microbial cytoplasm. Carbon in the active pool in needles, in soluble carbohydrates in phloem and in soil respiratory efflux had half-lives of 22, 17 and 35 h, respectively. Carbon in soil microbial cytoplasm had a half-life of 280 h, while the carbon in ectomycorrhizal root tips turned over much more slowly. Simultaneous labelling of the soil with showed that the ectomycorrhizal roots, which were the strongest sinks for photosynthate, were also the most active sinks for soil nitrogen.

    • These observations highlight the close temporal coupling between tree canopy photosynthesis and a significant fraction of soil activity in forests.

  • 31.
    Igamberdiev, Abir U
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Krömer, Silke
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    The role of mitochondrial electron transport during photosynthetic induction. A study with barley (Hordeum vulgare) protoplasts incubated with rotenone and oligomycin1998Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 104, nr 3, s. 431-439Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mitochondrial contribution to photosynthetic metabolism during photosynthetic induction was investigated in protoplasts from barley leaves (Hordeum vulgare L. cv. Gunilla, Svalof) by using an inhibitor of mitochondrial Complex I (rotenone) and an inhibitor of the mitochondrial ATPase (oligomycin). Both inhibitors increased the lag phase of photosynthetic induction after the transition of protoplasts from darkness to light. This effect was not observed with broken protoplasts or isolated chloroplasts. Using the method of rapid fractionation of protoplasts it was shown that the delay in photosynthetic induction was accompanied by a decrease in ATP/ADP ratios of the cytosol and mitochondria, whereas the ratio in chloroplasts was not affected. A delay in activation of chloroplastidic NADP-dependent malate dehydrogenase (EC 1.1.1.82) was observed in the presence of either inhibitor. A delay was also observed in the rise of photochemical quenching of chlorophyll fluorescence in the presence of rotenone or oligomycin during photosynthetic induction. The results indicate that during the transition from dark to light the mitochondrial electron transport chain and its Complex I participate in the reoxidation of excessive redox equivalents from photosynthetic electron transport.

  • 32. Ivanov, A. G.
    et al.
    Rosso, D.
    Savitch, L. V.
    Stachula, Paulina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Rosembert, M.
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huener, N. P. A.
    Implications of alternative electron sinks in increased resistance of PSII and PSI photochemistry to high light stress in cold-acclimated Arabidopsis thaliana2012Inngår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 113, nr 1-3, s. 191-206Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Exposure of control (non-hardened) Arabidopsis leaves to high light stress at 5 A degrees C resulted in a decrease of both photosystem II (PSII) (45 %) and Photosystem I (PSI) (35 %) photochemical efficiencies compared to non-treated plants. In contrast, cold-acclimated (CA) leaves exhibited only 35 and 22 % decrease of PSII and PSI photochemistry, respectively, under the same conditions. This was accompanied by an accelerated rate of P700(+) re-reduction, indicating an up-regulation of PSI-dependent cyclic electron transport (CET). Interestingly, the expression of the NDH-H gene and the relative abundance of the Ndh-H polypeptide, representing the NDH-complex, decreased as a result of exposure to low temperatures. This indicates that the NDH-dependent CET pathway cannot be involved and the overall stimulation of CET in CA plants is due to up-regulation of the ferredoxin-plastoquinone reductase, antimycin A-sensitive CET pathway. The lower abundance of NDH complex also implies lower activity of the chlororespiratory pathway in CA plants, although the expression level and overall abundance of the other well-characterized component involved in chlororespiration, the plastid terminal oxidase (PTOX), was up-regulated at low temperatures. This suggests increased PTOX-mediated alternative electron flow to oxygen in plants exposed to low temperatures. Indeed, the estimated proportion of O-2-dependent linear electron transport not utilized in carbon assimilation and not directed to photorespiration was twofold higher in CA Arabidopsis. The possible involvement of alternative electron transport pathways in inducing greater resistance of both PSII and PSI to high light stress in CA plants is discussed.

  • 33. Ivanov, A G
    et al.
    Sane, P
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Krol, M
    Sveshnikov, D
    Huner, N P A
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Low-temperature modulation of the redox properties of the acceptor side of photosystem II: photoprotection through reaction centre quenching of excess energy2003Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 119, nr 3, s. 376-383Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although it has been well established that acclimation to low growth temperatures is strongly correlated with an increased proportion of reduced Q(A) in all photosynthetic groups, the precise mechanism controlling the redox state of Q(A) and its physiological significance in developing cold tolerance in photoautotrophs has not been fully elucidated. Our recent thermoluminescence (TL) measurements of the acceptor site of PSII have revealed that short-term exposure of the cyanobacterium Synechococcus sp. PCC 7942 to cold stress, overwintering of Scots pine (Pinus sylvestris L.), and acclimation of Arabidopsis plants to low growth temperatures, all caused a substantial shift in the characteristic T-M of S(2)Q(B)(-) recombination to lower temperatures. These changes were accompanied by much lower overall TL emission, restricted electron transfer between Q(A) and Q(B), and in Arabidopsis by a shift of the S(2)Q(A)(-)-related peak to higher temperatures. The shifts in recombination temperatures are indicative of a lower activation energy for the S(2)Q(B)(-) redox pair and a higher activation energy for the S(2)Q(A)(-) redox pair. This results in an increase in the free-energy gap between P680(+)Q(A)(-) and P680(+)Pheo(-) and a narrowing of the free energy gap between Q(A) and Q(B) electron acceptors. We propose that these effects result in an increased population of reduced Q(A) (Q(A)(-)), facilitating non-radiative P680(+)Q(A)(-) radical pair recombination within the PSII reaction centre. The proposed reaction centre quenching could be an important protective mechanism in cyanobacteria in which antenna and zeaxanthin cycle-dependent quenching are not present. In herbaceous plants, the enhanced capacity for dissipation of excess light energy via PSII reaction centre quenching following cold acclimation may complement their capacity for increased utilization of absorbed light through CO2 assimilation and carbon metabolism. During overwintering of evergreens, when photosynthesis is inhibited, PSII reaction centre quenching may complement non-photochemical quenching within the light-harvesting antenna when zeaxanthin cycle-dependent energy quenching is thermodynamically restricted by low temperatures. We suggest that PSII reaction centre quenching is a significant mechanism enabling cold-acclimated organisms to acquire increased resistance to high light.

  • 34. Ivanov, Alexander G
    et al.
    Hendrickson, Luke
    Krol, Marianna
    Selstam, Eva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman P A
    Digalactosyl-diacylglycerol deficiency impairs the capacity for photosynthetic intersystem electron transport and state transitions in Arabidopsis thaliana due to photosystem I acceptor-side limitations.2006Inngår i: Plant Cell Physiology, ISSN 0032-0781, Vol. 47, nr 8, s. 1146-57Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Compared with wild type, the dgd1 mutant of Arabidopsis thaliana exhibited a lower amount of PSI-related Chl–protein complexes and lower abundance of the PSI-associated polypeptides, PsaA, PsaB, PsaC, PsaL and PsaH, with no changes in the levels of Lhca1–4. Functionally, the dgd1 mutant exhibited a significantly lower light-dependent, steady-state oxidation level of P700 (P700+) in vivo, a higher intersystem electron pool size, restricted linear electron transport and a higher rate of reduction of P700+ in the dark, indicating an increased capacity for PSI cyclic electron transfer compared with the wild type. Concomitantly, the dgd1 mutant exhibited a higher sensitivity to and incomplete recovery of photoinhibition of PSI. Furthermore, dgd1 exhibited a lower capacity to undergo state transitions compared with the wild type, which was associated with a higher reduction state of the plastoquinone (PQ) pool. We conclude that digalactosyl-diacylglycerol (DGDG) deficiency results in PSI acceptor-side limitations that alter the flux of electrons through the photosynthetic electron chain and impair the regulation of distribution of excitation energy between the photosystems. These results are discussed in terms of thylakoid membrane domain reorganization in response to DGDG deficiency in A. thaliana.

  • 35. Ivanov, Alexander G
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sane, Prafullachandra Vishnu
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman P A
    Reaction centre quenching of excess light energy and photoprotection of photosystem II2008Inngår i: Journal of Plant Biology, Vol. 51, nr 2, s. 85-96Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In addition to the energy dissipation of excess light occurring in PSII antenna via the xanthophyll cycle, there is mounting evidence of a zeaxanthin-independent pathway for non-photochemical quenching based within the PSII reaction centre (reaction centre quenching) that may also play a significant role in photoprotection. It has been demonstrated that acclimation of higher plants, green algae and cyanobacteria to low temperature or high light conditions which potentially induce an imbalance between energy supply and energy utilization is accompanied by the development of higher reduction state of QA and higher resistance to photoinhibition (Huner et al., 1998). Although this is a fundamental feature of all photoautotrophs, and the acquisition of increased tolerance to photoinhibition has been ascribed to growth and development under high PSII excitation pressure, the precise mechanism controlling the redox state of QA and its physiological significance in developing higher resistance to photoinhibition has not been fully elucidated. In this review we summarize recent data indicating that the increased resistance to high light in a broad spectrum of photosynthetic organisms acclimated to high excitation pressure conditions is associated with an increase probability for alternative non-radiative P680+QA − radical pair recombination pathway for energy dissipation within the reaction centre of PSII. The various molecular mechanisms that could account for nonphotochemical quenching through PSII reaction centre are also discussed.

  • 36. Ivanov, Alexander G
    et al.
    Krol, Marianna
    Sveshnikov, Dimitri
    Malmberg, Gunilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman P A
    Characterization of the photosynthetic apparatus in cortical bark chlorenchyma of Scots pine.2006Inngår i: Planta, ISSN 0032-0935, Vol. 223, nr 6, s. 1165-77Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) needles is accompanied by a 65% reduction of the maximum photochemical efficiency of photosystem II (PSII), measured as F v/F m, but relatively stable photosystem I (PSI) activity. In contrast, the photochemical efficiency of PSII in bark chlorenchyma of Scots pine twigs was shown to be well preserved, while PSI capacity was severely decreased. Low-temperature (77 K) chlorophyll fluorescence measurements also revealed lower relative fluorescence intensity emitted from PSI in bark chlorenchyma compared to needles regardless of the growing season. Nondenaturating SDS-PAGE analysis of the chlorophyll–protein complexes also revealed much lower abundance of LHCI and the CPI band related to light harvesting and the core complex of PSI, respectively, in bark chlorenchyma. These changes were associated with a 38% reduction in the total amount of chlorophyll in the bark chlorenchyma relative to winter needles, but the Chl a/b ratio and carotenoid composition were similar in the two tissues. As distinct from winter pine needles exhibiting ATP/ADP ratio of 11.3, the total adenylate content in winter bark chlorenchyma was 2.5-fold higher and the estimated ATP/ADP ratio was 20.7. The photochemical efficiency of PSII in needles attached to the twig recovered significantly faster (28–30 h) then in detached needles. Fluorescence quenching analysis revealed a high reduction state of Q A and the PQ-pool in the green bark tissue. The role of bark chlorenchyma and its photochemical performance during the recovery of photosynthesis from winter stress in Scots pine is discussed.

  • 37. Ivanov, Alexander G
    et al.
    Sane, Prafullachandra V
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huner, Norman P A
    Photosystem II reaction centre quenching: mechanisms and physiological role.2008Inngår i: Photosynthesis Research, ISSN 0166-8595, Vol. 98, nr 1-3, s. 565-74Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dissipation of excess absorbed light energy in eukaryotic photoautotrophs through zeaxanthin- and DpHdependent photosystem II antenna quenching is considered the major mechanism for non-photochemical quenching and photoprotection. However, there is mounting evidence of a zeaxanthin-independent pathway for dissipation of excess light energy based within the PSII reaction centre that may also play a significant role in photoprotection. We summarize recent reports which indicate that this enigma can be explained, in part, by the fact that PSII reaction centres can be reversibly interconverted from photochemical energy transducers that convert light into ATP

    and NADPH to efficient, non-photochemical energy quenchers that protect the photosynthetic apparatus from photodamage. In our opinion, reaction centre quenching complements photoprotection through antenna quenching, and dynamic regulation of photosystem II reaction centre represents a general response to any environmental condition that predisposes the accumulation of reduced QA in the photosystem II reaction centres of prokaryotic and eukaryotic photoautotrophs. Since the evolution of reaction centres preceded the evolution of light harvesting systems, reaction centre quenching may represent the oldest photoprotective mechanism.10.1007/s1120-00

  • 38. KROL, M
    et al.
    GRAY, GR
    HURRY, VM
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    OQUIST, G
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    MALEK, L
    HUNER, NPA
    LOW-TEMPERATURE STRESS AND PHOTOPERIOD AFFECT AN INCREASED TOLERANCE TO PHOTOINHIBITION IN PINUS-BANKSIANA SEEDLINGS1995Inngår i: Canadian Journal of Botany, ISSN 0008-4026, E-ISSN 1480-3305, Vol. 73, nr 8, s. 1119-1127Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The capacity to develop tolerance to photoinhibition of photosynthesis was assessed in jack pine seedlings (Pinus banksiana Lamb.). Photoinhibition induced at 5 degrees C in control jack pine seedlings grown at 20 degrees C was saturated above an irradiance of 1000 mu mol . m(-2). s(-1) but was detectable at an irradiance as low as 25 mu mol . m(-2). s(-1). However, 20 degrees C seedlings shifted to 5 degrees C were 2-fold more tolerant to photoinhibition than 20 degrees C unshifted control seedlings, as detected by either the light-dependent decrease in photochemical efficiency or the apparent quantum yield of O-2 evolution. The extent of this tolerance of photoinhibition was dependent upon time, photoperiod, and irradiance during exposure to the low-temperature shift. Furthermore, the tolerance of photoinhibition was correlated with anthocyanin accumulation in 20 degrees C grown seedlings shifted to 5 degrees C. In addition, seedlings shifted to 5 degrees C and an 8-h photoperiod exhibited a 2-fold higher yield of photosystem II electron transport, which was associated with an increased capacity to keep Q(A), the first stable quinone electron acceptor of photosystem II, oxidized at high irradiance. This was consistent with a 2-fold higher rate of photosynthesis on a chlorophyll basis. We propose that the combination of light attenuation by anthocyanin in the epidermis and enhanced rates of photosynthesis may, in part, account for the reduced sensitivity of jack pine to photoinhibition at low temperature.

  • 39. Krol, M
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Maxwell, D P
    Malek, L
    Ivanov, A G
    Huner, N P A
    Low growth temperature inhibition of photosynthesis in cotyledons of jack pine seedlings (Pinus banksiana) is due to impaired chloroplast development2002Inngår i: Canadian Journal of Botany, ISSN 0008-4026, E-ISSN 1480-3305, Vol. 80, nr 10, s. 1042-1051Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cotyledons of jack pine seedlings (Pinus banksiana Lamb.) grown from seeds were expanded at low temperature (5degreesC), and total Chl content per unit area of cotyledons in these seedlings was only 57% of that observed for cotyledons on 20degreesC-grown controls. Chl a/b ratio of 5degreesC-grown jack pine was about 20% lower (2.3 +/- 0.1) than 20degreesC controls (2.8 +/- 0.3). Separation of Chl-protein complexes and SDS-PAGE indicated a significant reduction in the major Chl a containing complex of PSI (CP1) and PSII (CPa) relative to LHCII1 in 5degreesC compared to 20degreesC-grown seedlings. In addition, LHCII1/LHCII3 ratio increased from 3.8 in control (20degreesC) to 5.5 in 5degreesC-grown cotyledons. Ultrastructurally, 5degreesC-grown cotyledons had chloroplasts with swollen thylakoids as well as etiochloroplasts with distinct prolamellar bodies. Based on CO2-saturated O-2 evolution and in vivo Chl a fluorescence, cotyledons of 5degreesC jack pine exhibited an apparent photosynthetic efficiency that was 40% lower than 20degreesC controls. Seedlings grown at 5degreesC were photoinhibited more rapidly at 5degreesC and 1200 mumol.m(-2).s(-1) than controls grown at 20degreesC, although the final extent of photoinhibition was similar. Exposure to high light at 5degreesC stimulated the xanthophyll cycle in cotyledons of both controls and 5degreesC-grown seedlings. In contrast to winter cereals, we conclude that growth of jack pine at 5degreesC impairs normal chloroplast biogenesis, which leads to an inhibition of photosynthetic efficiency.

  • 40.
    Kurepin, Leonid V.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Department of Biology and the Biotron Center for Experimental Climate Change Research, University of Western Ontario, London, Ontario, Canada.
    Stangl, Zsofia R.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ivanov, Alexander G.
    Bui, Vi
    Mema, Marin
    Huner, Norman P. A.
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Way, Danielle
    Hurry, Vaughan
    Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature2018Inngår i: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 41, nr 6, s. 1331-1345Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    High latitude forests will experience large changes in temperature and CO2 concentrations this century. We evaluated the effects of future climate conditions on 2 dominant boreal tree species, Pinus sylvestris L. and Picea abies (L.) H. Karst, exposing seedlings to 3 seasons of ambient (430 ppm) or elevated CO2 (750 ppm) and ambient temperatures, a + 4 degrees C warming or a + 8 degrees C warming. Pinus sylvestris responded positively to warming: seedlings developed a larger canopy, maintained high net CO2 assimilation rates (Anet), and acclimated dark respiration (Rdark). In contrast, carbon fluxes in Picea abies were negatively impacted by warming: maximum rates of Anet decreased, electron transport was redirected to alternative electron acceptors, and thermal acclimation of Rdark was weak. Elevated CO2 tended to exacerbate these effects in warm-grown Picea abies, and by the end of the experiment Picea abies from the +8 degrees C, high CO2 treatment produced fewer buds than they had 3 years earlier. Treatments had little effect on leaf and wood anatomy. Our results highlight that species within the same plant functional type may show opposite responses to warming and imply that Picea abies may be particularly vulnerable to warming due to low plasticity in photosynthetic and respiratory metabolism.

  • 41.
    Kurepin, Leonid V.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Stangl, Zsofia R.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Ivanov, Alexander G.
    Bui, Vi
    Mema, Marin
    Hüner, Norman P.A.
    Öquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Way, Danielle
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Contrasting acclimation abilities of two dominant northern conifers to elevated CO2 and temperatureManuskript (preprint) (Annet vitenskapelig)
  • 42.
    Lundmark, Maria
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Cavaco, Ana M.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Trevion, Stephen
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Carbon partitioning and export in transgenic Arabidopsis thaliana with altered capacity for sucrose synthesisgrown at low temperture: a role for metabolite transporters2006Inngår i: Plant, Cell and Environment, ISSN 0140-7791, E-ISSN 1365-3040, Vol. 29, nr 9, s. 1703-1714Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana(Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 °C and then shifted to 5 °C. We compared the leaves shifted to 5 °C for 3 and 10 d with new leaves that developed at 5 °C with control leaves on plants at 23 °C. At 23 °C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 °C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.

  • 43.
    Lundmark, Maria
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Lapointe, Line
    Département de biologie and Centre d’étude de la forêt, Université Laval, Québec City, Québec, Canada G1V 0A6.
    Low temperature maximizes growth of Crocus vernus (L.) Hill via changes in carbon partitioning and corm development.2009Inngår i: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 60, nr 7, s. 2203-2213Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In Crocus vernus, a spring bulbous species, prolonged growth at low temperatures results in the development of larger perennial organs and delayed foliar senescence. Because corm growth is known to stop before the first visual sign of leaf senescence, it is clear that factors other than leaf duration alone determine final corm size. The aim of this study was to determine whether reduced growth at higher temperatures was due to decreased carbon import to the corm or to changes in the partitioning of this carbon once it had reached the corm. Plants were grown under two temperature regimes and the amount of carbon fixed, transported, and converted into a storable form in the corm, as well as the partitioning into soluble carbohydrates, starch, and the cell wall, were monitored during the growth cycle. The reduced growth at higher temperature could not be explained by a restriction in carbon supply or by a reduced ability to convert the carbon into starch. However, under the higher temperature regime, the plant allocated more carbon to cell wall material, and the amount of glucose within the corm declined earlier in the season. Hexose to sucrose ratios might control the duration of corm growth in C. vernus by influencing the timing of the cell division, elongation, and maturation phases. It is suggested that it is this shift in carbon partitioning, not limited carbon supply or leaf duration, which is responsible for the smaller final biomass of the corm at higher temperatures.

  • 44. Metcalfe, Daniel B.
    et al.
    Lobo-do-Vale, Raquel
    Chaves, Manuela M.
    Maroco, Joao P.
    Aragao, Luiz E. O. C.
    Malhi, Yadvinder
    Da Costa, Antonio L.
    Braga, Alan P.
    Goncalves, Paulo L.
    De Athaydes, Joao
    Da Costa, Mauricio
    Almeida, Samuel S.
    Campbell, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Williams, Mathew
    Meir, Patrick
    Impacts of experimentally imposed drought on leaf respiration and morphology in an Amazon rain forest2010Inngår i: Functional Ecology, ISSN 0269-8463, E-ISSN 1365-2435, Vol. 24, nr 3, s. 524-533Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    P>1. The Amazon region may experience increasing moisture limitation over this century. Leaf dark respiration (R) is a key component of the Amazon rain forest carbon (C) cycle, but relatively little is known about its sensitivity to drought. 2. Here, we present measurements of R standardized to 25 degrees C and leaf morphology from different canopy heights over 5 years at a rain forest subject to a large-scale through-fall reduction (TFR) experiment, and nearby, unmodified Control forest, at the Caxiuana reserve in the eastern Amazon. 3. In all five post-treatment measurement campaigns, mean R at 25 degrees C was elevated in the TFR forest compared to the Control forest experiencing normal rainfall. After 5 years of the TFR treatment, R per unit leaf area and mass had increased by 65% and 42%, respectively, relative to pre-treatment means. In contrast, leaf area index (L) in the TFR forest was consistently lower than the Control, falling by 23% compared to the pre-treatment mean, largely because of a decline in specific leaf area (S). 4. The consistent and significant effects of the TFR treatment on R, L and S suggest that severe drought events in the Amazon, of the kind that may occur more frequently in future, could cause a substantial increase in canopy carbon dioxide emissions from this ecosystem to the atmosphere.

  • 45.
    Norén, Louise
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kindgren, Peter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Copenhagen Plant Science Centre, University of Copenhagen.
    Stachula, Paulina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Rühl, Mark
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Eriksson, Maria E.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Strand, Åsa
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Circadian and Plastid Signaling Pathways Are Integrated to Ensure Correct Expression of the CBF and COR Genes during Photoperiodic Growth2016Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 171, nr 2, s. 1392-1406Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The circadian clock synchronizes a wide range of biological processes with the day/night cycle, and correct circadian regulation is essential for photosynthetic activity and plant growth. We describe here a mechanism where a plastid signal converges with the circadian clock to fine-tune the regulation of nuclear gene expression in Arabidopsis (Arabidopsis thaliana). Diurnal oscillations of tetrapyrrole levels in the chloroplasts contribute to the regulation of the nucleus-encoded transcription factors C-REPEAT BINDING FACTORS (CBFs). The plastid signal triggered by tetrapyrrole accumulation inhibits the activity of cytosolic HEAT SHOCK PROTEIN90 and, as a consequence, the maturation and stability of the clock component ZEITLUPE (ZTL). ZTL negatively regulates the transcription factor LONG HYPOCOTYL5 (HY5) and PSEUDO-RESPONSE REGULATOR5 (PRR5). Thus, low levels of ZTL result in a HY5- and PRR5-mediated repression of CBF3 and PRR5-mediated repression of CBF1 and CBF2 expression. The plastid signal thereby contributes to the rhythm of CBF expression and the downstream COLD RESPONSIVE expression during day/night cycles. These findings provide insight into how plastid signals converge with, and impact upon, the activity of well-defined clock components involved in circadian regulation.

  • 46.
    Norén, Louise
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Kindgren, Peter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsenvej 40, 1871 Frederiksberg, Denmark.
    Stachula, Paulina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Rühl, Mark
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Eriksson, Maria E.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Strand, Åsa
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    HSP90, ZTL, PRR5 and HY5 integrate circadian and plastid signaling pathways to regulate CBF and COR expressionManuskript (preprint) (Annet vitenskapelig)
  • 47.
    Näsholm, Torgny
    et al.
    Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umea, Sweden.
    Högberg, Peter
    Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umeå, Sweden.
    Franklin, Oskar
    Int Inst Appl Syst Anal, A-2361 Laxenburg, Austria.
    Metcalfe, Daniel
    Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umeå, Sweden.
    Keel, Sonja G.
    Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umeå, Sweden.
    Campbell, Catherine
    SLU, Umeå Plant Sci Ctr, Dept Forest Genet & Plant Physiol, SE-90185 Umeå, Sweden.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Linder, Sune
    SLU, Southern Swedish Forest Res Ctr, SE-23053 Alnarp, Sweden.
    Högberg, Mona N.
    Swedish Univ Agr Sci SLU, Dept Forest Ecol & Management, SE-90183 Umeå, Sweden.
    Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?2013Inngår i: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 198, nr 1, s. 214-221Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. We followed symbiotic carbon (C)N exchange in a large-scale boreal pine forest experiment by tracing 13CO2 absorbed through tree photosynthesis and 15N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. We detected little 15N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of 15N from soil microbes and root tips to tree foliage. These results were tested in a model for CN exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply.

  • 48.
    Oquist, Gunnar
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HURRY, VM
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HUNER, NPA
    LOW-TEMPERATURE EFFECTS ON PHOTOSYNTHESIS AND CORRELATION WITH FREEZING TOLERANCE IN SPRING AND WINTER CULTIVARS OF WHEAT AND RYE1993Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 101, nr 1, s. 245-250Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Winter cultivars of rye (Secale cereale L., cv Musketeer) and wheat (Triticum aestivum L. cvs Kharkov and Monopol), but not a spring cultivar of wheat (Glenlea), grown at cold-hardening temperatures showed, at high irradiances, a higher proportion of oxidized to reduced primary, stable quinone receptor (Q(A)) than did the same cultivars grown under nonhardening conditions. In addition, there was a positive correlation between the effects of low-growth temperature on this increased proportion of oxidized Q(A), and a concomitant increase in the capacity for photosynthesis, and LT50, the temperature at which 50% of the seedlings are killed, in cultivars showing different freezing tolerances. This suggests that low-temperature modulation of the photosynthetic apparatus may be an important factor during the induction of freezing resistance in cereals. Finally, the control of photosystem II photochemistry by nonphotochemical quenching of excitation energy was identical for nonhardened and cold-hardened winter rye. However, examination of measuring temperature effects per se revealed that, irrespective of growth temperature, nonphotochemical quenching exerted a stronger control on photosystem II photochemistry at 10-degrees-C rather than at 20-degrees-C.

  • 49.
    Oquist, Gunnar
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HURRY, VM
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    HUNER, NPA
    THE TEMPERATURE-DEPENDENCE OF THE REDOX STATE OF Q(A) AND SUSCEPTIBILITY OF PHOTOSYNTHESIS TO PHOTOINHIBITION1993Inngår i: Plant physiology and biochemistry (Paris), ISSN 0981-9428, E-ISSN 1873-2690, Vol. 31, nr 5, s. 683-691Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The relationship between the redox state of primary, stable quinone acceptor of photosystem II (Q(A)) and the susceptibility of photosynthesis to photoinhibition at different temperatures was investigated. Non-hardened and cold-hardened seedlings of winter rye, and of winter and spring cultivars of wheat, were obtained by growth at either 20/16-degrees-C (day/night) or 5/5-degrees-C (day/night), respectively. A single, curvi-linear relationship was established between the steady-state redox level Of Q(A) and the susceptibility of photosynthesis to short-term (8 h) photoinhibition at 5 or 25-degrees-C when spring and winter cultivars of rye and wheat, in non-hardened or cold-hardened states, were plotted together. Furthermore, irrespective of temperature (0 to 25-degrees-C) or state of cold-hardiness, the susceptibility of photosynthesis to photoinhibition was controlled fully in winter rye by the redox state Of Q(A); e.g. similar susceptibilities to photoinhibition were obtained at 0, 5 and 25-degrees-C provided that the photon fluence rate at the different temperatures was adjusted to keep 50% of the photosystem II reaction centres in a closed state under steady-state illumination. Our results suggest that the primary reason plants become prone to photoinhibition at low temperatures is that the proportion of closed reaction centres increases due to the low temperature imposed constraints on photosynthesis. Thus, we propose that low temperature sensitized photoinhibition results from low temperature inhibition of photosynthesis rather than from low temperature inhibition of the photosystem II repair cycle.

  • 50. Pocock, T H
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Savitch, L V
    Huner, N P A
    Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat: The role of growth temperature and irradiance2001Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 113, nr 4, s. 499-506Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Five winter and five spring wheat (Triticum aestivum L.) cultivars were grown under either control conditions (20 degreesC/250 photosynthetic photon flux density (PPFD) [mu mol m(-2) s(-1)]), high irradiance (20 degreesC/800 PPFD) or at low temperature (either 5 degreesC/250 PPFD or 5 degreesC/50 PPFD). To eliminate any potential bias, the wheat cultivars were arbitrarily chosen without any previous knowledge of their freezing tolerance or photosynthetic competence. We show that the differential susceptibilities to photoinhibition exhibited between spring and winter wheat cultivars, as assessed by chlorophyll fluorescence cannot be explained on the basis of either growth irradiance or low growth temperature per se. The role of excitation pressure is discussed. We assessed the correlation between susceptibility to low-temperature photoinhibition, maximum ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39) and NADP-dependent malate dehydrogenase (EC 1.1.1.82) activities, chlorophyll and protein concentrations and freezing tolerance determined by electrolyte leakage. Susceptibility to photoinhibition is the only parameter examined that is strongly and negatively correlated with freezing tolerance. We suggest that the assessment of susceptibility to photoinhibition may be a useful predictor of freezing tolerance and field survival of cereals.

12 1 - 50 of 65
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf