umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Goldberg, Emily L.
    et al.
    Asher, Jennifer L.
    Molony, Ryan D.
    Shaw, Albert C.
    Zeiss, Caroline J.
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Morozova-Roche, Ludmilla A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Herzog, Raimund I.
    Iwasaki, Akiko
    Dixit, Vishwa Deep
    beta-Hydroxybutyrate deactivates Neutrophil NLRP3 inflammasome to relieve gout flares2017Ingår i: Cell reports, ISSN 2211-1247, E-ISSN 2211-1247, Vol. 18, nr 9, s. 2077-2087Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Aging and lipotoxicity are two major risk factors for gout that are linked by the activation of the NLRP3 inflammasome. Neutrophil-mediated production of interleukin-1 beta (IL-1 beta) drives gouty flares that cause joint destruction, intense pain, and fever. However, metabolites that impact neutrophil inflammasome remain unknown. Here, we identified that ketogenic diet (KD) increases beta-hydroxybutyrate (BHB) and alleviates urate crystal-induced gout without impairing immune defense against bacterial infection. BHB inhibited NLRP3 inflammasome in S100A9 fibril-primed and urate crystal-activated macrophages, which serve to recruit inflammatory neutrophils in joints. Consistent with reduced gouty flares in rats fed a ketogenic diet, BHB blocked IL-1 beta in neutrophils in a NLRP3-dependent manner in mice and humans irrespective of age. Mechanistically, BHB inhibited the NLRP3 inflammasome in neutrophils by reducing priming and assembly steps. Collectively, our studies show that BHB, a known alternate metabolic fuel, is also an anti-inflammatory molecule that may serve as a treatment for gout.

  • 2. Gruden, Marina A
    et al.
    Davydova, Tatiana V
    Narkevich, Victor B
    Fomina, Valentina G
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kudrin, Vladimir S
    Morozova-Roche, Ludmilla A
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sewell, Robert D E
    Noradrenergic and serotonergic neurochemistry arising from intranasal inoculation with α-synuclein aggregates which incite parkinsonian-like symptoms2015Ingår i: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 279, s. 191-201Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Alpha-synuclein (α-syn) toxic aggregates delivered by the nasal vector have been shown to modify the neurochemistry of dopamine (DA) which is associated with parkinsonian-like motor symptoms. The aim was therefore to study the intranasal effects of α-syn oligomers, fibrils or their combination on the motor behavior of aged mice in relation to possible noradrenergic and serotonergic correlates. In vitro generated α-syn oligomers and fibrils were verified using atomic force microscopy and the thioflavin T binding assay. Levels of noradrenaline (NA), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) were detected using HPLC with electrochemical detection in the substantia nigra (SN) and striatum. The oligomers or fibrils administered alone or in a 50:50 combination (total dose of 0.48mg/kg) were given intranasally for 14 days and "open-field" behaviour was tested on days 0, 15 and 28 of the protocol, at which time brain structures were sampled. Behavioral deficits at the end of the 14-day dosing regime and on day 28 (i.e. 14 days after treatment completion) induced hypokinesia and immobility whilst the aggregate combination additionally produced rigidity. The α-Syn oligomer/fibril mixture also instigated PD-like motor symptoms which correlated heterochronically with elevated NA levels in the striatum but then later in the SN while intranasal fibrils alone augmented 5-HT and 5-HIAA nigral concentrations throughout the protocol. In contrast, α-syn oligomers displayed a delayed serotonin upsurge in the SN. Neurodegenerative and/or actions on neurotransmitter transporters (such as NET, SERT and VMAT2) are discussed as being implicated in these α-syn amyloid induced neurochemical and motoric disturbances.

  • 3. Gruden, Marina A
    et al.
    Davydova, Tatiana V
    Narkevich, Victor B
    Fomina, Valentina G
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kudrin, Vladimir S
    Morozova-Roche, Ludmilla A
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sewell, Robert DE
    Intranasal administration of alpha-synuclein aggregates: a Parkinson's disease model with behavioral and neurochemical correlates2014Ingår i: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 263, s. 158-168Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Parkinson's disease (PD) is a neurodegenerative disorder in which both alpha-synuclein (alpha-syn) and dopamine (DA) have a critical role. Our previous studies instigated a novel PD model based on nasal inoculation with alpha-syn aggregates which expressed parkinsonian-like behavioral and immunological features. The current study in mice substantiated the robustness of the amyloid nasal vector model by examining behavioral consequences with respect to DA-ergic neurochemical corollaries. In vitro generated alpha-syn oligomers and fibrils were characterized using atomic force microscopy and the thioflavin T binding assay. These toxic oligomers or fibrils administered alone (0.48 mg/kg) or their 50:50 combination (total dose of 0.48 mg/kg) were given intranasally for 14 days and "open-field" behavior was tested on days 0, 15 and 28 of the protocol. Behavioral deficits at the end of the 14-day dosing regime and on day 28 (i.e., 14 days after treatment completion) induced rigidity, hypokinesia and immobility. This was accompanied by elevated nigral but not striatal DA, DOPAC and HVA concentrations in response to dual administration of alpha-syn oligomers plus fibrils but not the oligomers by themselves. alpha-Syn fibrils intensified not only the hypokinesia and immobility 14 days post treatment, but also reduced vertical rearing and enhanced DA levels in the substantia nigra. Only nigral DA turnover (DOPAC/DA but not HVA/DA ratio) was augmented in response to fibril treatment but there were no changes in the striatum. Compilation of these novel behavioral and neurochemical findings substantiate the validity of the alpha-syn nasal vector model for investigating parkinsonian-like symptoms.

    (C) 2014 Elsevier B.V. All rights reserved.

  • 4. Gruden, Marina A.
    et al.
    Davydova, Tatiana V.
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Narkevich, Victor B.
    Fomina, Valentina G.
    Kudrin, Vladimir S.
    Morozova-Roche, Ludmilla A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sewell, Robert D. E.
    The misfolded pro-inflammatory protein S100A9 disrupts memory via neurochemical remodelling instigating an Alzheimer's disease-like cognitive deficit2016Ingår i: Behavioural Brain Research, ISSN 0166-4328, E-ISSN 1872-7549, Vol. 306, s. 106-116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Memory deficits may develop from a variety of neuropathologies including Alzheimer's disease dementia. During neurodegenerative conditions there are contributory factors such as neuroinflammation and amyloidogenesis involved in memory impairment. In the present study, dual properties of S100A9 protein as a pro-inflammatory and amyloidogenic agent were explored in the passive avoidance memory task along with neurochemical assays in the prefrontal cortex and hippocampus of aged mice. S100A9 oligomers and fibrils were generated in vitro and verified by AFM, Thioflavin T and All antibody binding. Native S100A9 as well as S100A9 oligomers and fibrils or their combination were administered intranasally over 14 days followed by behavioral and neurochemical analysis. Both oligomers and fibrils evoked amnestic activity which correlated with disrupted prefrontal cortical and hippocampal dopaminergic neurochemistry. The oligomer-fibril combination produced similar but weaker neurochemistry to the fibrils administered alone but without passive avoidance amnesia. Native S100A9 did not modify memory task performance even though it generated a general and consistent decrease in monoamine levels (DA, 5-HT and NA) and increased metabolic marker ratios of DA and 5-HT turnover (DOPAC/DA, HVA/DA and 5-HIAA) in the prefrontal cortex. These results provide insight into a novel pathogenetic mechanism underlying amnesia in a fear-aggravated memory task based on amyloidogenesis of a pro-inflammatory factor leading to disrupted brain neurochemistry in the aged brain. The data further suggests that amyloid species of S100A9 create deleterious effects principally on the dopaminergic system and this novel finding might be potentially exploited during dementia management through a neuroprotective strategy.

  • 5.
    Horvath, Istvan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Iashchishyn, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of General Chemistry, Sumy State University, Sumy 40007, Ukraine.
    Moskalenko, Roman A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. 3 Department of Pathology, Sumy State University, Sumy 40007, Ukraine.
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Warmlander, Sebastian K. T. S.
    Wallin, Cecilia
    Graslund, Astrid
    Kovacs, Gabor G.
    Morozova-Roche, Ludmilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Co-aggregation of pro-inflammatory S100A9 with alpha-synuclein in Parkinson's disease: ex vivo and in vitro studies2018Ingår i: Journal of Neuroinflammation, ISSN 1742-2094, E-ISSN 1742-2094, Vol. 15, artikel-id 172Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Chronic neuroinflammation is a hallmark of Parkinson's disease (PD) pathophysiology, associated with increased levels of pro-inflammatory factors in PD brain tissues. The pro-inflammatory mediator and highly amyloidogenic protein S100A9 is involved in the amyloid-neuroinflammatory cascade in Alzheimer's disease. This is the first report on the co-aggregation of alpha-synuclein (alpha-syn) and S100A9 both in vitro and ex vivo in PD brain.

    Methods: Single and sequential immunohistochemistry, immunofluorescence, scanning electron and atomic force (AFM) microscopies were used to analyze the ex vivo PD brain tissues for S100A9 and alpha-syn location and aggregation. In vitro studies revealing S100A9 and alpha-syn interaction and co-aggregation were conducted by NMR, circular dichroism, Thioflavin-T fluorescence, AFM, and surface plasmon resonance methods.

    Results: Co-localized and co-aggregated S100A9 and alpha-syn were found in 20% Lewy bodies and 77% neuronal cells in the substantia nigra; both proteins were also observed in Lewy bodies in PD frontal lobe (Braak stages 4-6). Lewy bodies were characterized by ca. 10-23 mu m outer diameter, with S100A9 and alpha-syn being co-localized in the same lamellar structures. S100A9 was also detected in neurons and blood vessels of the aged patients without PD, but in much lesser extent. In vitro S100A9 and alpha-syn were shown to interact with each other via the alpha-syn C-terminus with an apparent dissociation constant of ca. 5 mu M. Their co-aggregation occurred significantly faster and led to formation of larger amyloid aggregates than the self-assembly of individual proteins. S100A9 amyloid oligomers were more toxic than those of alpha-syn, while co-aggregation of both proteins mitigated the cytotoxicity of S100A9 oligomers.

    Conclusions: We suggest that sustained neuroinflammation promoting the spread of amyloidogenic S100A9 in the brain tissues may trigger the amyloid cascade involving alpha-syn and S100A9 and leading to PD, similar to the effect of S100A9 and A beta co-aggregation in Alzheimer's disease. The finding of S100A9 involvement in PD may open a new avenue for therapeutic interventions targeting S100A9 and preventing its amyloid self-assembly in affected brain tissues.

  • 6.
    Horvath, Istvan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Jia, Xueen
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Johansson, Per
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Moskalenko, Roman
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Pathology, Sumy State University, Sumy 40000, Ukraine.
    Steinau, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Forsgren, Lars
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Wågberg, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Svensson, Johan
    Zetterberg, Henrik
    Morozova-Roche, Ludmilla A
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Pro-inflammatory S100A9 Protein as a Robust Biomarker Differentiating Early Stages of Cognitive Impairment in Alzheimer's Disease2016Ingår i: ACS Chemical Neuroscience, ISSN 1948-7193, E-ISSN 1948-7193, Vol. 7, nr 1, s. 34-39Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pro-inflammatory protein S100A9 was established as a biomarker of dementia progression and compared with others such as Aβ1-42 and tau-proteins. CSF samples from 104 stringently diagnosed individuals divided into five subgroups were analyzed, including nondemented controls, stable mild cognitive impairment (SMCI), mild cognitive impairment due to Alzheimer's disease (MCI-AD), Alzheimer's disease (AD), and vascular dementia (VaD) patients. ELISA, dot-blotting, and electrochemical impedance spectroscopy were used as research methods. The S100A9 and Aβ1-42 levels correlated with each other: their CSF content decreased already at the SMCI stage and declined further under MCI-AD, AD, and VaD conditions. Immunohistochemical analysis also revealed involvement of both Aβ1-42 and S100A9 in the amyloid-neuroinflammatory cascade already during SMCI. Tau proteins were not yet altered in SMCI; however their contents increased during MCI-AD and AD, diagnosing later dementia stages. Thus, four biomarkers together, reflecting different underlying pathological causes, can accurately differentiate dementia progression and also distinguish AD from VaD.

  • 7.
    Iashchishyn, Igor A.
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of General Chemistry, Sumy State University, Sumy, Ukraine.
    Gruden, Marina A.
    Moskalenko, Roman A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Pathology, Sumy State University, Sumy, Ukraine .
    Davydova, Tatiana, V
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sewell, Robert D. E.
    Morozova-Roche, Ludmilla A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Intranasally Administered S100A9 Amyloids Induced Cellular Stress, Amyloid Seeding, and Behavioral Impairment in Aged Mice2018Ingår i: ACS Chemical Neuroscience, ISSN 1948-7193, E-ISSN 1948-7193, Vol. 9, nr 6, s. 1338-1348Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Amyloid formation and neuroinflammation are major features of Alzheimer's disease pathology. Proinflammatory mediator S100A9 was shown to act as a link between the amyloid and neuroinflammatory cascades in Alzheimer's disease, leading together with Aβ to plaque formation, neuronal loss and memory impairment. In order to examine if S100A9 alone in its native and amyloid states can induce neuronal stress and memory impairment, we have administered S100A9 species intranasally to aged mice. Single and sequential immunohistochemistry and passive avoidance behavioral test were conducted to evaluate the consequences. Administered S100A9 species induced widespread cellular stress responses in cerebral structures, including frontal lobe, hippocampus and cerebellum. These were manifested by increased levels of S100A9, Box, and to a lesser extent activated caspase-3 immunopositive cells. Upon administration of S100A9 fibrils, the amyloid oligomerization was observed in the brain tissues, which can further exacerbate cellular stress. The cellular stress responses correlated with significantly increased training and decreased retention latencies measured in the passive avoidance test for the SI00A9 treated animal groups. Remarkably, the effect size in the behavioral tests was moderate already in the group treated with native S100A9, while the effect sizes were large in the groups administered S100A9 amyloid oligomers or fibrils. The findings demonstrate the brain susceptibility to neurotoxic damage of S100A9 species leading to behavioral and memory impairments. Intranasal administration of S100A9 species proved to be an effective method to study amyloid induced brain dysfunctions, and 5100A9 itself may be postulated as a target to allay early stage neurodegenerative and neuroinflammatory processes.

  • 8.
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Role of pro-inflammatory S100A9 protein in amyloid-neuroinflammatory cascade in Alzheimer’s disease and traumatic brain injury2016Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Background Traumatic brain injury (TBI) is a complex disease with a spectrum of symptoms and disabilities. Over the past decade TBI has become the focus of research due to growing epidemiological and clinical evidences that TBI incidences are strong risk factors for Alzheimer’s disease (AD). Major pathological hallmarks of AD are massive accumulations of amyloid-β peptide (Aβ) toxic oligomers and plaques. Neuroinflammation is also considered as a common denominator in AD and aging. The epidemiological and experimental studies have supported that non-steroidal anti-inflammatory drugs markedly reduce the age-related prevalence of AD and can slow amyloid deposition by mechanisms that still remain elusive. S100A9 is a multifunctional cytokine with diverse roles in the cell signaling pathways associated with inflammation and cancers. A widespread expression of S100A9 was also reported in many other ailments involving inflammatory processes, such as AD, malaria, cerebral ischemia and TBI, implying that S100A9 may be a universal biomarker of inflammation. The distinctive feature of S100A9 compared to other pro-inflammatory cytokines is its ability to self-assemble into amyloids, which may lead to the loss of its signaling functions and acquired amyloid cytotoxicity, exceeding that of Aβ.

    Methods S100A9 properties was studied under various ex vivo and in vitro conditions. First, human and mouse tissues with TBI and AD were subjected to microscopic, immunohistochemical and immunofluorescent techniques. Then, aged mouse treated with native, oligomeric and fibrillary S100A9 was also studied by using behavioral and neurochemical analysis. Moreover, S100A9 was established as a biomarker of dementia progression and compared with others such as Aβ42 and tau proteins, by studying cerebrospinal fluid (CSF) samples from different stages of dementia. Finally, in vitro experiments on S100A9 amyloidogenesis, co-aggregation with Aβ40 and Aβ42, digestion and cytotoxicity were also performed by using spectroscopic, atomic force microscopy and cell biology methods.

    Results S100A9-driven amyloid-neuroinflammatory cascade serves as a link between TBI and AD. We have found that S100A9 contributes to the plaque formation and intraneuronal responses in AD, being a part of the amyloid-neuroinflammatory cascade. In TBI we have found that extensive S100A9 neuronal production and amyloid self-assembly is triggered immediately after injury, leading to apoptotic pathways and neuronal loss. S100A9 is an integral component of both TBI precursor-plaques, formed prior to Aβ deposition, and AD plaques, characterized by different degree of amyloid maturation, indicating that all plaques are associated with inflammation. Both intra- and extracellular amyloid-neuroinflammatory cascades are intertwined and showed similar tendencies in human and mouse tissues in TBI and AD. Ex vivo findings are further supported by in vitro experiments on S100A9 amyloidogenesis, digestion and cytotoxicity. Importantly, being highly amyloidogenic itself, S100A9 can trigger and aggravate Aβ amyloid self-assembly and significantly contribute to amyloid cytotoxicity. Moreover, the CSF dynamics of S100A9 levels matches very closely the content of Aβ42 in AD, vascular dementia and mild cognitive impairment due to AD, emphasizing the involvement of S100A9 together with Aβ in the amyloid-neuroinflammatory cascade in these ailments.

    Conclusions The conclusions of this thesis is that the inflammatory pathways and S100A9 specifically represent a potential target for the therapeutic interventions during various post-TBI stages and far prior AD development to halt and reverse these damaging processes.

  • 9.
    Wang, Chao
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Iashchishyn, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kara, John
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Fodera, Vito
    Vetri, Valeria
    Sancataldo, Giuseppe
    Marklund, Niklas
    Morozova-Roche, Ludmilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Proinflammatory and amyloidogenic S100A9 induced by traumatic brain injury in mouse model2019Ingår i: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 699, s. 199-205Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Traumatic brain injury (TBI) represents a significant risk factor for development of neurodegenerative diseases such as Alzheimer's and Parkinson's. The S100A9-driven amyloid-neuroinflammatory cascade occurring during primary and secondary TBI events can serve as a mechanistic link between TBI and Alzheimer's as demonstrated recently in the human brain tissues. Here by using immunohistochemistry in the controlled cortical impact TBI mouse model we have found pro-inflammatory S100A9 in the brain tissues of all mice on the first and third post- TBI days, while 70% of mice did not show any S100A9 presence on seventh post-TBI day similar to controls. This indicates that defensive mechanisms effectively cleared S100A9 in these mouse brain tissues during post-TBI recovery. By using sequential immunohistochemistry we have shown that S100A9 was produced by both neuronal and microglial cells. However, A beta peptide deposits characteristic for Alzheimer's disease were not detected in any post-TBI animals. On the first and third post-TBI days S100A9 was found to aggregate intracellularly into amyloid oligomers, similar to what was previously observed in human TBI tissues. Complementary, by using Rayleigh scatting, intrinsic fluorescence and atomic force microscopy we demonstrated that in vitro S100A9 self- assembles into amyloid oligomers within minutes. Its amyloid aggregation is highly dependent on changes of environmental conditions such as variation of calcium levels, pH, temperature and reduction/oxidation, which might be relevant to perturbation of cellular and tissues homeostasis under TBI. Present results demonstrate that S100A9 induction mechanisms in TBI are similar in mice and humans, emphasizing that S100A9 is an important marker of brain injury and therefore can be a potential therapeutic target.

  • 10.
    Wang, Chao
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Iashchishyn, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Nyström, Sofie
    Klementieva, Oxana
    Kara, John
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bengtsson, Sara
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap.
    Foderà, Vito
    Vetri, Valeria
    Sancataldo, Giuseppe
    Horvath, Istvan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Moskalenko, Roman
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Pathology, Sumy State University, Sumy, Ukraine.
    Rofougaran, Reza
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Bäckström, Torbjörn
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap.
    Wang, Mingde
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap.
    Gouras, Gunnar
    Marklund, Niklas
    Shankar, S.K.
    Morozova-Roche, Ludmilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    S100A9-driven amyloid-neuroinflammatory cascade in traumatic brain injury as a risk factor for Alzheimer’s diseaseManuskript (preprint) (Övrigt vetenskapligt)
  • 11.
    Wang, Chao
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Iashchishyn, Igor
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of General Chemistry, Sumy State University, Sumy, 40000, Ukraine.
    Pansieri, Jonathan
    Nyström, Sofie
    Klementieva, Oxana
    Kara, John
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Horvath, Istvan
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Moskalenko, Roman
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Department of Pathology, Sumy State University, Sumy, 40000, Ukraine.
    Rofougaran, Reza
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Gouras, Gunnar
    Kovacs, Gabor G.
    Shankar, S. K.
    Morozova-Roche, Ludmilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    S100A9-Driven Amyloid-Neuroinflammatory Cascade in Traumatic Brain Injury as a Precursor State for Alzheimer's Disease2018Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, artikel-id 12836Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pro-inflammatory and amyloidogenic S100A9 protein is an important contributor to Alzheimer's disease (AD) pathology. Traumatic brain injury (TBI) is viewed as a precursor state for AD. Here we have shown that S100A9-driven amyloid-neuroinflammatory cascade was initiated in TBI and may serve as a mechanistic link between TBI and AD. By analyzing the TBI and AD human brain tissues, we demonstrated that in post-TBI tissues S100A9, produced by neurons and microglia, becomes drastically abundant compared to A beta and contributes to both precursor-plaque formation and intracellular amyloid oligomerization. Conditions implicated in TBI, such as elevated S100A9 concentration, acidification and fever, provide strong positive feedback for S100A9 nucleation-dependent amyloid formation and delay in its proteinase clearance. Consequently, both intracellular and extracellular S100A9 oligomerization correlated with TBI secondary neuronal loss. Common morphology of TBI and AD plaques indicated their similar initiation around multiple aggregation centers. Importantly, in AD and TBI we found S100A9 plaques without A beta. S100A9 and A beta plaque pathology was significantly advanced in AD cases with TBI history at earlier age, signifying TBI as a risk factor. These new findings highlight the detrimental consequences of prolonged post-TBI neuroinflammation, which can sustain S100A9-driven amyloid-neurodegenerative cascade as a specific mechanism leading to AD development.

  • 12.
    Wang, Chao
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Klechikov, Alexey G.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Gharibyan, Anna L.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Wärmländer, Sebastian K. T. S.
    Jarvet, Jüri
    Zhao, Lina
    Jia, Xueen
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Shankar, S. K.
    Olofsson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Brännström, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    Mu, Yuguang
    Gräslund, Astrid
    Morozova-Roche, Ludmilla A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    The role of pro-inflammatory S100A9 in Alzheimer's disease amyloid-neuroinflammatory cascade2014Ingår i: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 127, nr 4, s. 507-522Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pro-inflammatory S100A9 protein is increasingly recognized as an important contributor to inflammation-related neurodegeneration. Here, we provide insights into S100A9 specific mechanisms of action in Alzheimer's disease (AD). Due to its inherent amyloidogenicity S100A9 contributes to amyloid plaque formation together with A beta. In traumatic brain injury (TBI) S100A9 itself rapidly forms amyloid plaques, which were reactive with oligomer-specific antibodies, but not with A beta and amyloid fibrillar antibodies. They may serve as precursor-plaques for AD, implicating TBI as an AD risk factor. S100A9 was observed in some hippocampal and cortical neurons in TBI, AD and non-demented aging. In vitro S100A9 forms neurotoxic linear and annular amyloids resembling A beta protofilaments. S100A9 amyloid cytotoxicity and native S100A9 pro-inflammatory signaling can be mitigated by its co-aggregation with A beta, which results in a variety of micron-scale amyloid complexes. NMR and molecular docking demonstrated transient interactions between native S100A9 and A beta. Thus, abundantly present in AD brain pro-inflammatory S100A9, possessing also intrinsic amyloidogenic properties and ability to modulate A beta aggregation, can serve as a link between the AD amyloid and neuroinflammatory cascades and as a prospective therapeutic target.

  • 13. Zhao, Li Na
    et al.
    Zhang, Tong
    Zhang, Ce
    Wang, Chao
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Morozova-Roche, Ludmilla A.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Chew, Lock Yue
    Mu, Yuguang
    S100A9 induces aggregation-prone conformation in Abeta peptides: a combined experimental and simulation study2013Ingår i: RSC Advances, ISSN 2046-2069, E-ISSN 2046-2069, Vol. 3, nr 46, s. 24081-24089Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Inflammation is one of the prominent pathological features in Alzheimer's disease (AD). Recently, there have been various proposed roles of neuroinflammation, such as the driving forces, bystander, byproduct or the neuroprotective response. Notwithstanding these diverse possible mechanisms, experiments have found that S100A9 is one of the pro-inflammatory proteins abundant and over-expressed in the inflammation sites of AD. In this paper, we examine the role of S100A9 in the oligomerization process of A beta peptides by means of replica exchange molecular dynamics simulation and experimental investigations. Our experiments, based on atomic force microscopy and Thioflavin T spectroscopic assays, have clearly indicated that the close interaction between S100A9 and A beta has significantly enhanced the A beta oligomerization. In line with the experimental observation, our simulation studies have revealed that the pro-inflammatory S100A9 protein interacts with the A beta peptides directly, mainly through hydrophobic interactions with the A beta central hydrophobic core region. In addition, the formation of hydrogen bonds between the residues of the S100A9 homodimer and the two ends of the A beta peptides is found to cause a straightening of the A beta(12-24) peptides. A more straight A beta(12-24) peptide with a higher beta-content then may function as a template to induce the folding of new incoming A beta peptides, which leads to the formation of aggregation-prone oligomers.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf