umu.sePublications
Change search
Refine search result
1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersen, Peter M.
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Hempel, Maja
    Santer, René
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Tsiakas, Konstantinos
    Johannsen, Jessika
    Volk, Alexander E.
    Bierhals, Tatjana
    Zetterström, Per
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Phenotype in an Infant with SOD1 Homozygous Truncating Mutation2019In: New England Journal of Medicine, ISSN 0028-4793, E-ISSN 1533-4406, Vol. 381, no 5, p. 486-488Article in journal (Refereed)
  • 2.
    Forsgren, Elin
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Nordin, Frida
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Rofougaran, Reza
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Danielsson, Jens
    Marklund, Stefan
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Gilthorpe, Jonathan
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Andersen, Peter
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    A Novel mutation D96Mfs*8 in SOD1 identified in a Swedish ALS patient results in a truncated and heavily aggregation-prone proteinManuscript (preprint) (Other (popular science, discussion, etc.))
  • 3. Freischmidt, Axel
    et al.
    Wieland, Thomas
    Richter, Benjamin
    Ruf, Wolfgang
    Schaeffer, Veronique
    Mueller, Kathrin
    Marroquin, Nicolai
    Nordin, Frida
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Huebers, Annemarie
    Weydt, Patrick
    Pinto, Susana
    Press, Rayomond
    Millecamps, Stephanie
    Molko, Nicolas
    Bernard, Emilien
    Desnuelle, Claude
    Soriani, Marie-Helene
    Dorst, Johannes
    Graf, Elisabeth
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Feiler, Marisa S.
    Putz, Stefan
    Boeckers, Tobias M.
    Meyer, Thomas
    Winkler, Andrea S.
    Winkelman, Juliane
    de Carvalho, Mamede
    Thal, Dietmar R.
    Otto, Markus
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Volk, Alexander E.
    Kursula, Petri
    Danzer, Karin M.
    Lichtner, Peter
    Dikic, Ivan
    Meitinger, Thomas
    Ludolph, Albert C.
    Strom, Tim M.
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Weishaupt, Jochen H.
    Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia2015In: Nature Neuroscience, ISSN 1097-6256, E-ISSN 1546-1726, Vol. 18, no 5, p. 631-+Article in journal (Refereed)
    Abstract [en]

    Amyotrophic lateral sclerosis (ALS) is a genetically heterogeneous neurodegenerative syndrome hallmarked by adult-onset loss of motor neurons. We performed exome sequencing of 252 familial ALS (fALS) and 827 control individuals. Gene-based rare variant analysis identified an exome-wide significant enrichment of eight loss-of-function (LoF) mutations in TBK1 (encoding TANK-binding kinase 1) in 13 fALS pedigrees. No enrichment of LoF mutations was observed in a targeted mutation screen of 1,010 sporadic ALS and 650 additional control individuals. Linkage analysis in four families gave an aggregate LOD score of 4.6. In vitro experiments confirmed the loss of expression of TBK1 LoF mutant alleles, or loss of interaction of the C-terminal TBK1 coiled-coil domain (CCD2) mutants with the TBK1 adaptor protein optineurin, which has been shown to be involved in ALS pathogenesis. We conclude that haploinsufficiency of TBK1 causes ALS and fronto-temporal dementia.

  • 4.
    Keskin, Isil
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Forsgren, Elin
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Lange, Dale J.
    Synofzik, Matthis
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Zetterström, Per
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Gilthorpe, Jonathan D.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Low oxygen tension induces misfolding and aggregation of superoxide dismutase in ALS patient-derived motor neuronsManuscript (preprint) (Other academic)
  • 5.
    Keskin, Isil
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Forsgren, Elin
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Lehmann, Manuela
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Lange, Dale J.
    Synofzik, Matthis
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Zetterström, Per
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Gilthorpe, Jonathan D.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    The molecular pathogenesis of superoxide dismutase 1-linked ALS is promoted by low oxygen tension2019In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 138, no 1, p. 85-101Article in journal (Refereed)
    Abstract [en]

    Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS). Disease pathogenesis is linked to destabilization, disorder and aggregation of the SOD1 protein. However, the non-genetic factors that promote disorder and the subsequent aggregation of SOD1 have not been studied. Mainly located to the reducing cytosol, mature SOD1 contains an oxidized disulfide bond that is important for its stability. Since O2 is required for formation of the bond, we reasoned that low O2 tension might be a risk factor for the pathological changes associated with ALS development. By combining biochemical approaches in an extensive range of genetically distinct patient-derived cell lines, we show that the disulfide bond is an Achilles heel of the SOD1 protein. Culture of patient-derived fibroblasts, astrocytes, and induced pluripotent stem cell-derived mixed motor neuron and astrocyte cultures (MNACs) under low oxygen tensions caused reductive bond cleavage and increases in disordered SOD1. The effects were greatest in cells derived from patients carrying ALS-linked mutations in SOD1. However, significant increases also occurred in wild-type SOD1 in cultures derived from non-disease controls, and patients carrying mutations in other common ALS-linked genes. Compared to fibroblasts, MNACs showed far greater increases in SOD1 disorder and even aggregation of mutant SOD1s, in line with the vulnerability of the motor system to SOD1-mediated neurotoxicity. Our results show for the first time that O2 tension is a principal determinant of SOD1 stability in human patient-derived cells. Furthermore, we provide a mechanism by which non-genetic risk factors for ALS, such as aging and other conditions causing reduced vascular perfusion, could promote disease initiation and progression.

  • 6. Kurowska, Zuzanna
    et al.
    Jewett, Michael
    Brattås, Per Ludvik
    Jimenez-Ferrer, Itzia
    Kenez, Xuyian
    Björklund, Tomas
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Brundin, Patrik
    Swanberg, Maria
    Identification of Multiple QTLs Linked to Neuropathology in the Engrailed-1 Heterozygous Mouse Model of Parkinson's Disease2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, article id 31701Article in journal (Refereed)
    Abstract [en]

    Motor symptoms in Parkinson's disease are attributed to degeneration of midbrain dopaminergic neurons (DNs). Heterozygosity for Engrailed-1 (En1), one of the key factors for programming and maintenance of DNs, results in a parkinsonian phenotype featuring progressive degeneration of DNs in substantia nigra pars compacta (SNpc), decreased striatal dopamine levels and swellings of nigro-striatal axons in the SwissOF1-En1+/- mouse strain. In contrast, C57Bl/6-En1+/- mice do not display this neurodegenerative phenotype, suggesting that susceptibility to En1 heterozygosity is genetically regulated. Our goal was to identify quantitative trait loci (QTLs) that regulate the susceptibility to PD-like neurodegenerative changes in response to loss of one En1 allele. We intercrossed SwissOF1-En1+/- and C57Bl/6 mice to obtain F2 mice with mixed genomes and analyzed number of DNs in SNpc and striatal axonal swellings in 120 F2-En1+/- 17 week-old male mice. Linkage analyses revealed 8 QTLs linked to number of DNs (p = 2.4e-09, variance explained = 74%), 7 QTLs linked to load of axonal swellings (p = 1.7e-12, variance explained = 80%) and 8 QTLs linked to size of axonal swellings (p = 7.0e-11, variance explained = 74%). These loci should be of prime interest for studies of susceptibility to Parkinson's disease-like damage in rodent disease models and considered in clinical association studies in PD.

  • 7.
    Lehmann, Manuela
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Marklund, Matthew
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Bolender, Anna-Lena
    Bidhendi, Elaheh E.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Gilthorpe, Jonathan D.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    An aggregate-selective monoclonal antibody attenuates seeded but not spontaneously evolving SOD1 aggregation in ALS model miceManuscript (preprint) (Other academic)
  • 8.
    Nordström, Ulrika
    et al.
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Edlund, Thomas
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Progressive induction of caudal neural character by graded Wnt signaling2002In: Nature Neuroscience, ISSN 1097-6256, E-ISSN 1546-1726, Vol. 5, no 6, p. 525-532Article in journal (Refereed)
    Abstract [en]

    Early in differentiation, all neural cells have a rostral character. Only later do posteriorly positioned neural cells acquire characteristics of caudal forebrain, midbrain and hindbrain cells. Caudalization of neural tissue in the chick embryo apparently involves the convergent actions of (i) fibroblast growth factor (FGF) signaling and (ii) signaling from the caudal paraxial mesoderm, or 'PMC activity', which has not yet been defined molecularly. Here we report evidence that Wnt signaling underlies PMC activity, and show that Wnt signals act directly and in a graded manner on anterior neural cells to induce their progressive differentiation into caudal forebrain, midbrain and hindbrain cells.

  • 9.
    Paré, Bastien
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Lehmann, Manuela
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Beaudin, Marie
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Saikali, Stephan
    Julien, Jean-Pierre
    Gilthorpe, Jonathan D.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Marklund, Stefan L.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Cashman, Neil R.
    Andersen, Peter M.
    Forsberg, Karin
    Dupre, Nicolas
    Gould, Peter
    Brannstrom, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Gros-Louis, Francois
    Misfolded SOD1 pathology in sporadic Amyotrophic Lateral Sclerosis2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, article id 14223Article in journal (Refereed)
    Abstract [en]

    Aggregation of mutant superoxide dismutase 1 (SOD1) is a pathological hallmark of a subset of familial ALS patients. However, the possible role of misfolded wild type SOD1 in human ALS is highly debated. To ascertain whether or not misfolded SOD1 is a common pathological feature in non-SOD1 ALS, we performed a blinded histological and biochemical analysis of post mortem brain and spinal cord tissues from 19 sporadic ALS, compared with a SOD1 A4V patient as well as Alzheimer's disease (AD) and non-neurological controls. Multiple conformation-or misfolded-specific antibodies for human SOD1 were compared. These were generated independently by different research groups and were compared using standardized conditions. Five different misSOD1 staining patterns were found consistently in tissue sections from SALS cases and the SOD1 A4V patient, but were essentially absent in AD and non-neurological controls. We have established clear experimental protocols and provide specific guidelines for working, with conformational/misfolded SOD1-specific antibodies. Adherence to these guidelines will aid in the comparison of the results of future studies and better interpretation of staining patterns. This blinded, standardized and unbiased approach provides further support for a possible pathological role of misSOD1 in SALS.

  • 10. Ventorp, Filip
    et al.
    Bay-Richter, Cecilie
    Nagendra, Analise Sauro
    Janelidze, Shorena
    Sjödahl Matsson, Viktor
    Lipton, Jack
    Nordström, Ulrika
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Westrin, Åsa
    Brundin, Patrik
    Brundin, Lena
    Exendin-4 Treatment Improves LPS-Induced Depressive-Like Behavior Without Affecting ProInflammatory Cytokines2017In: Journal of Parkinson's Disease, ISSN 1877-7171, E-ISSN 1877-718X, Vol. 7, no 2, p. 263-273Article in journal (Refereed)
    Abstract [en]

    Background: Exendin-4 is a peptide agonist of the glucagon-like peptide-1 (GLP-1) receptor, currently in clinical trials as a potential disease-modifying therapy for Parkinson's disease. In light of this, it is important to understand potential modes of action of exendin-4 in the brain. Exendin-4 is neuroprotective and has been proposed to be directly anti-inflammatory, and that this is one way it reduces neurodegeneration. However, prior studies have focused on animal models involving both neurodegeneration and inflammation, therefore, it is also possible that the observed decreased inflammation is secondary to reduced neurodegeneration. Objective: To investigate whether exendin-4 directly reduces inflammation in the brain following an insult that involves neuroinflammation but not neurodegeneration, namely systemic administration of lipopolysaccharide (LPS). Methods: Rats were administered LPS systemically and were treated with either 0.5 mu g/kg exendin-4 or saline vehicle injections over 5 days. Behavior was evaluated with forced swim test. We assayed TNF-alpha and IL-1 beta levels in cerebrospinal fluid and cytokine mRNA expression in striatal, hippocampal and cortical tissues using qPCR. We determined brain monoamines using high-performance liquid chromatography. Finally, we isolated primary brain microglia from rats and measured cytokine production after exendin-4 treatment and LPS stimulation. Results: Exendin-4 treatment did not affect cytokine mRNA expression in brain, cytokine levels in cerebrospinal fluid or cytokine production from cultured microglia, although there was a trend towards increased striatal dopamine. Importantly, exendin-4 significantly prevented depressive-like behavior at 24 hours after LPS injection, indicating that the drug engaged a target in the brain. Depressive-like behavior was associated with altered dopamine turnover in the striatum. Conclusion: We did not detect any anti-inflammatory effects of exendin-4. In previous studies exploring the effects of exendin-4 on brain insults involving neurodegeneration, observations of reduced inflammation might have been secondary to mitigation of neuronal death. Our results indicate that the effects of exendin-4 on behavior may be due to effects on dopamine synthesis or metabolism.

1 - 10 of 10
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf