umu.sePublications
Change search
Refine search result
1 - 39 of 39
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Emma K.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Evans, Margery L.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sellstedt, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Lindgren, Anders E.G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hufnagel, David A.
    Bhattacharya, Moumita
    Tessier, Peter M.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chapman, Matthew R.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). University of Michigan, USA.
    Modulation of Curli Assembly and Pellicle Biofilm Formation by Chemical and Protein Chaperones2013In: Chemistry and Biology, ISSN 1074-5521, E-ISSN 1879-1301, Vol. 20, no 10, p. 1245-1254Article in journal (Refereed)
    Abstract [en]

    Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation. The ability of inhibitor compounds to stop growing CsgA fibers was compared to the same property of the CsgA chaperone, CsgE. CsgE blocked CsgA amyloid assembly and arrested polymerization when added to actively polymerizing fibers. Additionally, CsgE and the 2-pyridone inhibitors prevented biofilm formation by Escherichia coli at the air-liquid interface of a static culture. We demonstrate that curli amyloid assembly and curli-dependent biofilm formation can be modulated not only by protein chaperones, but also by "chemical chaperones."

  • 2. Bengtsson, Christoffer
    et al.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Krishnan, Syam
    Banchelin, Thomas Sainte-Luce
    Gustafson, Karl
    Das, Pralay
    Sinha, Arun K
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis of a bromomethyl substituted bicyclic 2-pyridone scaffold2013In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 245Article in journal (Refereed)
  • 3. Bhattacharjee, Snehasish
    et al.
    Chakraborty, Sandipan
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sengupta, Pradeep K.
    Bhowmik, Sudipta
    Importance of the hydroxyl substituents in the B-ring of plant flavonols on their preferential binding interactions with VEGF G-quadruplex DNA: Multi-spectroscopic and molecular modeling studies2018In: International Journal of Biological Macromolecules, ISSN 0141-8130, E-ISSN 1879-0003, Vol. 118, p. 629-639Article in journal (Refereed)
    Abstract [en]

    G-quadruplex (G4) structures are known to be promising anticancer drug targets and flavonols (an important class of fiavonoids) are small molecules reported to possess several health-promoting properties including those of anticancer activities. In this work, we explored the interactions of the structurally related plant flavonols kaempferol (KAE; 3,5,7,4'-OH flavone) and morin (MOR; 3,5,7,2',4'-OH flavone) with various G4-DNA sequences along with duplex DNA using a combination of spectroscopic and molecular docking studies. Our results revealed that KAE shows preferential interaction with VEGF G4-DNA in comparison to the other G4 sequences and duplex DNA. Moreover, KAE enhances the thermal stability of VEGF G4-DNA. In contrast, MOR exhibits an appreciably weaker level of interaction with both duplex and various G4-DNAs, with no significant structural specificity. The contrasting DNA binding behaviors suggest a crucial role of the 2'-OH substituent in the Bring of flavonol moiety. While KAE is relatively planar, MOR adopts a significantly non-planar conformation attributable to steric hindrance from the additional 2'-OH substituent. This small structural difference is apparently very important for the ability of KAE and MOR to interact with VEGF G4-DNA. Thus, KAE (but not MOR) appears to be an effective ligand for VEGF G4-DNA, opening up possibilities of its application for regulation of gene expression in cancer cells. 

  • 4.
    Cegelski, Lynette
    et al.
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA..
    Pinkner, Jerome S
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
    Hammer, Neal D
    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
    Cusumano, Corinne K
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
    Hung, Chia S
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Åberg, Veronica
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Walker, Jennifer N
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
    Seed, Patrick C
    Departments of Pediatrics and Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chapman, Matthew R
    Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
    Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation2009In: Nature Chemical Biology, ISSN 1552-4450, EISSN 1552-4469, Vol. 5, no 12, p. 913-919Article in journal (Refereed)
    Abstract [en]

    Curli are functional extracellular amyloid fibers produced by uropathogenic Escherichia coli (UPEC) and other Enterobacteriaceae. Ring-fused 2-pyridones, such as FN075 and BibC6, inhibited curli biogenesis in UPEC and prevented the in vitro polymerization of the major curli subunit protein CsgA. The curlicides FN075 and BibC6 share a common chemical lineage with other ring-fused 2-pyridones termed pilicides. Pilicides inhibit the assembly of type

    1pili, which are required for pathogenesis during urinary tract infection. Notably, the curlicides retained pilicide activities and inhibited both curli-dependent and type 1–dependent biofilms. Furthermore, pretreatment of UPEC with FN075 significantly attenuated virulence in a mouse model of urinary tract infection. Curli and type 1pili exhibited exclusive and independent roles in promoting UPEC biofilms, and curli provided a fitness advantage in vivo. Thus, the ability of FN075 to block the biogenesis of both curli and type 1pili endows unique anti-biofilm and anti-virulence activities on these compounds.

  • 5.
    Chermenina, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Henrik, Antti
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Strömberg, Ingrid
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    A novel animal model for Parkinson's disease based on in vivo effects of small-molecule of alpha-synucleinManuscript (preprint) (Other academic)
    Abstract [en]

    Amyloid fibrils of alpha-synuclein are major constituents of Lewy bodies, the pathological hallmark of Parkinson’s disease. Monomeric α-synuclein is involved in synaptic vesicle trafficking and long-term maintenance of neurons. The underlying mechanisms of Parkinson’s disease are not known but it has been proposed that oligomers of α-synuclein, formed during the aggregation process, are toxic to neurons. To search for a new animal model of Parkinson’s disease, here we capitalized on the in vitro discovery of a small-molecule templator of α-synuclein fibrillization, the 2-pyridone, FN075. FN075 and MS382, another 2-pyridone variant that act as an inhibitor of amyloids in vitro, were injected into the striatum or substantia nigra of normal C57Bl/6 mice. No acute toxicity of the compounds was detected, as there was 100 % survival of the injected mice. At 6 months after the striatal injection, sensorimotor functions were impaired with no reduction in TH-positive neurons in the substantia nigra in mice injected with FN075, whereas mice injected with MS382 or vehicle had no dysfunctions. Injection of FN075 into the substantia nigra revealed a significant loss of TH-positive neurons already at 3 months and TH-negative inclusion-like structures were detected in substantia nigra neurons of these mice. Thus, the results suggest that injection of a templator of α-synuclein aggregation into the brain of normal mice can serve as a novel experimental design for an animal model of Parkinson’s disease.

  • 6.
    Chermenina, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pokrzywa, Malgorzata
    Antti, Henrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Strömberg, Ingrid
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Single injection of small-molecule amyloid accelerator results in cell death of nigral dopamine neurons in mice2015In: Parkinson's Disease, ISSN 2090-8083, E-ISSN 2042-0080, Vol. 1, article id 15024Article in journal (Refereed)
    Abstract [en]

    The assembly process of a-synuclein toward amyloid fibers is linked to neurodegeneration in Parkinson´s disease. In the present study, we capitalized on the in vitro discovery of a small-molecule accelerator of a-synuclein amyloid formation and assessed its effects when injected in brains of normal mice. An accelerator and an inhibitor of a-synuclein amyloid formation, as well as vehicle only, were injected into the striatum of normal mice and follwed by behavioral evaluation, immunohistochemistry, and metabolomics up to six months later. The effects of molecules injected into the substansia nigra of normal and a-synuclein knockout mice were also analyzed. When accelerator or inhibitor was injected into the brain of normal mice no acute compound toxicity was found. However, 6 months after single striatal injection of accelerator, mice sensorimotor functions were impaired, whereas mice injected with inhibitor had no dysfunctions. Injection of accelerator (but not inhibitor or vehicle) into the substantia nigra revealed singificant loss of tyrosine hydroxylase (TH)-positive neurons after 3 months. No loss of TH-positive neurons was found in a-synuclein knock-out mice injected with accelerator intor the substantia nigra. Metabolic serum profiles from accelerator-injected normal mice matched those of newly diagnosed Parkinson´s disease patients, whereas the profiles from inhibitor-injected normal mice matched controls. Single inoculation of a small-molecule amyloid accelerator may be a new approach for studies of early events during dopamine neurodegeneration in mice.

  • 7.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pilicides and Curlicides: Design, synthesis, and evaluation of novel antibacterial agents targeting bacterial virulence2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    New strategies are needed to counter the growing problem of bacterial resistance to antibiotics. One such strategy is to design compounds that target bacterial virulence, which could work separately or in concert with conventional bacteriostatic or bactericidal antibiotics. Pilicides are a class of compounds based on a ring-fused 2-pyridone scaffold that target bacterial virulence by blocking the chaperone/usher pathway in E. coli and thereby inhibit the assembly of pili. This thesis describes the design, synthesis, and biological evaluation of compounds based on the pilicide scaffold with the goal of improving the pilicides and expanding their utility. Synthetic pathways have been developed to enable the introduction of substituents at the C-2 position of the pilicide scaffold. Biological evaluation of these compounds demonstrated that some C-2 substituents give rise to significant increases in potency. X-ray crystallography was used to elucidate the structural basis of this improved biological activity. Furthermore, improved methods for the preparation of oxygen-analogues and C-7 substituted derivatives of the pilicide scaffold have been developed. These new methods were used in combination with existing strategies to decorate the pilicide scaffold as part of a multivariate design approach to improve the pilicides and generate structure activity relationships (SARs).

    Fluorescent pilicides were prepared using a strategy where selected substituents were replaced with fluorophores having similar physicochemical properties as the original substituents. Many of the synthesized fluorescent compounds displayed potent pilicide activities and can thus be used to study the complex interactions between pilicide and bacteria. For example, when E. coli was treated with fluorescent pilicides, it was found that the compounds were not uniformly distributed throughout the bacterial population, suggesting that the compounds are primarily associated to bacteria with specific properties.

    Finally, by studying compounds designed to inhibit the aggregation of Aβ, it was found that some compounds based on the pilicide scaffold inhibit the formation of the functional bacterial amyloid fibers known as curli; these compounds are referred to as 'curlicides'. Some of the curlicides also prevent the formation of pili and thus exhibit dual pilicide-curlicide activity. The potential utility of such 'dual-action' compounds was highlighted by a study of one of the more potent dual pilicide-curlicides in a murine UTI model were the compound was found to significantly attenuate virulence in vivo.

  • 8.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Emma
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Evans, Margery L.
    Jain, Neha
    Götheson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Åden, Jörgen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chapman, Matthew R.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bacterial Chaperones CsgE and CsgC Differentially Modulate Human α-Synuclein Amyloid Formation via Transient Contacts2015In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, no 10, p. 1-11, article id e0140194Article in journal (Refereed)
    Abstract [en]

    Amyloid formation is historically associated with cytotoxicity, but many organisms produce functional amyloid fibers (e.g., curli) as a normal part of cell biology. Two E. coli genes in the curli operon encode the chaperone-like proteins CsgC and CsgE that both can reduce in vitro amyloid formation by CsgA. CsgC was also found to arrest amyloid formation of the human amyloidogenic protein α-synuclein, which is involved in Parkinson’s disease. Here, we report that the inhibitory effects of CsgC arise due to transient interactions that promote the formation of spherical α-synuclein oligomers. We find that CsgE also modulates α-synuclein amyloid formation through transient contacts but, in contrast to CsgC, CsgE accelerates α-synuclein amyloid formation. Our results demonstrate the significance of transient protein interactions in amyloid regulation and emphasize that the same protein may inhibit one type of amyloid while accelerating another.

  • 9.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sainte-Luce Banchelin, Thomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Das, Pralay
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Uvell, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sinha, Arun K
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis and application of a bromomethyl substituted scaffold to be used for efficient optimization of anti-virulence activity2011In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 46, no 4, p. 1103-1116Article in journal (Refereed)
    Abstract [en]

    Pilicides are a class of compounds that attenuate virulence in Gram negative bacteria by blocking the chaperone/usher pathway in Escherichia coli. It has also been shown that compounds derived from the peptidomimetic scaffold that the pilicides are based on can prevent both Aβ aggregation and curli formation. To facilitate optimizations towards the different targets, a new synthetic platform has been developed that enables fast and simple introduction of various substituents in position C-7 on the peptidomimetic scaffold. Importantly, this strategy also enables introduction of previously unattainable heteroatoms in this position. Pivotal to the synthetic strategy is the synthesis of a C-7 bromomethyl substituted derivative of the ring-fused dihydrothiazolo 2-pyridone pilicide scaffold. From this versatile and reactive intermediate various heteroatom-linked substituents could be introduced on the scaffold including amines, ethers, amides and sulfonamides. In addition, carbon-carbon bonds could be introduced to the sp(3)-hybridized bromomethyl substituted scaffold by Suzuki-Miyaura cross couplings. Evaluation of the 24 C-7 substituted compounds in whole-bacterial assays provided important structure-activity data and resulted in the identification of a number of new pilicides with activity as good or better than those developed previously.

  • 10.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Elin
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Efficient Synthesis of 2-Substituted Phthalimides from Phthalic Acids in One Step2013In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, Vol. 2013, no 33, p. 7512-7516Article in journal (Refereed)
    Abstract [en]

    Efficient procedures for synthesizing 2-substituted phthalimide (isoindole-1,3-dione) analogues starting from phthalic acids have been developed by using experimental design. The phthalimide central fragment frequently appears in biologically active compounds, materials, catalysts, and fluorescent probes, and therefore the development of general, fast, and convenient synthetic methods to this scaffold under neutral, acidic, and basic conditions would be attractive. After an initial screening, the use of acetonitrile, acetic acid, or pyridine in combination with microwave heating proved most promising. Experimental design was applied to these conditions to optimize the time, temperature, and concentration. This strategy has successfully generated synthetic methods that have been used to synthesize a series of phthalimides from phthalic acids and various amines or anilines in excellent yields. The developed methods have proven to be general, fast, convenient, and economic, and thus are expected to have broad utility to efficiently construct novel compounds for future biological and chemical applications.

  • 11.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Das, Pralay
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Diverse functionalization of Thiazolo ring-fused 2-Pyridones2007In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 72, no 13, p. 4917-4924Article in journal (Refereed)
    Abstract [en]

    Thiazolo ring-fused 2-pyridones have proven to be highly interesting scaffolds for the development of biologically active compounds. Many methods are today available to introduce a variety of substituents in the 2-pyridone part of the heterocycle. Herein we disclose how a diverse set of substituents can be introduced in the thiazolo ring, with possibilities to vary also the spatial arrangement of the substituents. A key intermediate is the oxidized framework 9 for which an effective synthesis is described. The thiazolo part of this system can be substituted either via conjugate additions, resulting in trans selectivity, or via microwave-assisted Heck couplings that result in unsaturated aryl-substituted analogues. The scaffold can also be lithiated followed by the addition of various electrophiles, which increases the diversification potential substantially, as exemplified with the introduction of halogens, alkyl, acyl, and amide substituents.

  • 12.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Edvinsson, Sofie
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Improved procedure for the enantioselective synthesis of dihydrooxazolo and dihydrothiazolo ring-fused 2-pyridones2010In: Tetrahedron Letters, ISSN 0040-4039, E-ISSN 1359-8562, Vol. 51, no 18, p. 2461-2463Article in journal (Refereed)
    Abstract [en]

    Improved procedures to synthesize enantioselectively analogues of a peptidomimetic scaffold with high biological relevance have been developed. Experimental design led to a general method for the preparation of dihydrooxazolo ring-fused 2-pyridones in good yields and high enantiomeric purity. The knowledge gained from this was also used to improve the microwave-accelerated synthesis of dihydrothiazolo ring-fused 2-pyridones to give complete stereo retention and high yields.

  • 13.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Banchelin, Thomas Sainte-Luce
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Edvinsson, Sofie
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Linusson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hultgren, Scott J
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mapping pilicide anti-virulence effect in Escherichia coli, a comprehensive structure-activity study2012In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 20, no 9, p. 3128-3142Article in journal (Refereed)
    Abstract [en]

    Pilicides prevent pili formation and thereby the development of bacterial biofilms in Escherichia coli. We have performed a comprehensive structure activity relationship (SAR) study of the dihydrothiazolo ring-fused 2-pyridone pilicide central fragment by varying all open positions. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to distinguish active from inactive compounds in which polarity proved to be the most important factor for discrimination. A quantitative SAR (QSAR) partial least squares (PLS) model was calculated on the active compounds for prediction of biofilm inhibition activity. In this model, compounds with high inhibitory activity were generally larger, more lipophilic, more flexible and had a lower HOMO. Overall, this resulted in both highly valuable SAR information and potent inhibitors of type 1 pili dependent biofilm formation. The most potent biofilm inhibitor had an EC(50) of 400nM.

  • 14.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Edvinsson, Sofie
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cusumano, Corinne K
    Rosenbaum, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Lennart B-Å
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hultgren, Scott J
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Design and Synthesis of Fluorescent Pilicides and Curlicides: Bioactive Tools to Study Bacterial Virulence Mechanisms2012In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 18, no 15, p. 4522-4532Article in journal (Refereed)
    Abstract [en]

    Pilicides and curlicides are compounds that block the formation of the virulence factors pili and curli, respectively. To facilitate studies of the interaction between these compounds and the pili and curli assembly systems, fluorescent pilicides and curlicides have been synthesized. This was achieved by using a strategy based on structure-activity knowledge, in which key pilicide and curlicide substituents on the ring-fused dihydrothiazolo 2-pyridone central fragment were replaced by fluorophores. Several of the resulting fluorescent compounds had improved activities as measured in pili- and curli-dependent biofilm assays. We created fluorescent pilicides and curlicides by introducing coumarin and 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores at two positions on the peptidomimetic pilicide and curlicide central fragment. Fluorescence images of the uropathogenic Escherichia coli (UPEC) strain UTI89 grown in the presence of these compounds shows that the compounds are strongly associated with the bacteria with a heterogeneous distribution.

  • 15.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S.
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Edvinsson, Sofie
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cusumano, Corinne K.
    Rosenbaum, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Lennart B-Å
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hultgren, Scott J.
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Design and synthesis of fluorescently labeled pilicides and curlicides: bioactive tools to study bacterial virulence mechanismsManuscript (preprint) (Other academic)
    Abstract [en]

    Pilicides and curlicides block formation of the E. coli virulence factors pili and curli. To facilitate studies of the interaction between these compounds and the pili and curli assembly systems, fluorescent pilicides and curlicides have been synthesized. This was achieved using a strategy where key pilicide and curlicide substituents were replaced by fluorophores having similar physicochemical properties. The resulting fluorescent compounds had improved anti-virulence activities as measured in pili- and curli-dependent biofilm assays. We created fluorescent pilicides and curlicides by introducing both coumarin and 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) fluorophores at two positions on the peptidomimetic pilicide and curlicide scaffold. Fluorescence images of the uropathogenic Escherichia coli (UPEC) strain UTI89 grown in the presence of these compounds shows that the compounds are strongly associated to the bacteria and seem to discriminate between different bacteria in a population.

  • 16.
    Chorell, Erik
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Phan, Gilles
    Institute of Structural and Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, U.K..
    Edvinsson, Sofie
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Buelens, Floris
    Institute of Structural and Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, U.K..
    Remaut, Han
    Institute of Structural and Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, U.K..
    Waksman, Gabriel
    Institute of Structural and Molecular Biology, University College London/Birkbeck, Malet Street, London WC1E 7HX, U.K..
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University, School of Medicine, St. Louis, Missouri 63110, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Design and synthesis of C-2 substituted Thiazolo and Dihydrothiazolo ring-fused 2-Pyridones: pilicides with increased antivirulence activity2010In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 53, no 15, p. 5690-5695Article in journal (Refereed)
    Abstract [en]

    Pilicides block pili formation by binding to pilus chaperones and blocking their function in the chaperone/usher pathway in E. coli. Various C-2 substituents were introduced on the pilicide scaffold by design and synthetic method developments. Experimental evaluation showed that proper substitution of this position affected the biological activity of the compound. Aryl substituents resulted in pilicides with significantly increased potencies as measured in pili-dependent biofilm and hemagglutination assays. The structural basis of the PapD chaperone-pilicide interactions was determined by X-ray crystallography.

  • 17.
    Dang, Hung The
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, USA.
    Uvell, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S.
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, USA.
    Hultgren, Scott J.
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Syntheses and biological evaluation of 2-amino-3-acyl-tetrahydrobenzothiophene derivatives: antibacterial agents with antivirulence activity2014In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 12, no 12, p. 1942-1956Article in journal (Refereed)
    Abstract [en]

    Developing new compounds targeting virulence factors (e.g., inhibition of pilus assembly by pilicides) is a promising approach to combating bacterial infection. A high-throughput screening campaign of a library of 17 500 small molecules identified 2-amino-3-acyl-tetrahydrobenzothiophene derivatives (hits 2 and 3) as novel inhibitors of pili-dependent biofilm formation in a uropathogenic Escherichia coli strain UTI89. Based on compounds 2 and 3 as the starting point, we designed and synthesized a series of structurally related analogs and investigated their activity against biofilm formation of E. coli UTI89. Systematic structural modification of the initial hits provided valuable information on their SARs for further optimization. In addition, small structural changes to the parent molecules resulted in low micromolar inhibitors (20-23) of E. coli biofilm development without an effect on bacterial growth. The hit compound 3 and its analog 20 were confirmed to prevent pili formation in a hemagglutination (HA) titer assay and electron microscopy (EM) measurements. These findings suggest that 2-amino-3-acyl-tetrahydrobenzothiophenes may serve as a new class of compounds for further elaboration as antibacterial agents with antivirulence activity.

  • 18.
    Engström, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Krishnan, K. Syam
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ngyuen, Bidong D.
    Chorell, Erik
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Normark, Johan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Bastidas, Robert J.
    Welch, Matthew D.
    Hultgren, Scott J.
    Wolf-Watz, Hans
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Valdivia, Raphael H.
    Almqvist, Fredrik
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    A 2-Pyridone-Amide Inhibitor Targets the Glucose Metabolism Pathway of Chlamydia trachomatis2015In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 6, no 1, article id e02304-14Article in journal (Refereed)
    Abstract [en]

    In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. IMPORTANCE Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.

  • 19. Evans, Margery L.
    et al.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Taylor, Jonathan D.
    Ådén, Jörgen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Götheson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Li, Fei
    Koch, Marion
    Sefer, Lea
    Matthews, Steve J.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chapman, Matthew R.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    The Bacterial Curli System Possesses a Potent and Selective Inhibitor of Amyloid Formation2015In: Molecular Cell, ISSN 1097-2765, E-ISSN 1097-4164, Vol. 57, no 3, p. 445-455Article in journal (Refereed)
    Abstract [en]

    Summary Curli are extracellular functional amyloids that are assembled by enteric bacteria during biofilm formation and host colonization. An efficient secretion system and chaperone network ensures that the major curli fiber subunit, CsgA, does not form intracellular amyloid aggregates. We discovered that the periplasmic protein CsgC was a highly effective inhibitor of CsgA amyloid formation. In the absence of CsgC, CsgA formed toxic intracellular aggregates. In vitro, CsgC inhibited CsgA amyloid formation at substoichiometric concentrations and maintained CsgA in a non-β-sheet-rich conformation. Interestingly, CsgC inhibited amyloid assembly of human α-synuclein, but not Aβ42, in vitro. We identified a common D-Q-Φ-X0,1-G-K-N-ζ-E motif in CsgC client proteins that is not found in Aβ42. CsgC is therefore both an efficient and selective amyloid inhibitor. Dedicated functional amyloid inhibitors may be a key feature that distinguishes functional amyloids from disease-associated amyloids.

  • 20. Flentie, Kelly
    et al.
    Harrison, Gregory A.
    Tükenmez, Hasan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Livny, Jonathan
    Good, James A. D.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sarkar, Souvik
    Zhu, Dennis X.
    Kinsella, Rachel L.
    Weiss, Leslie A.
    Solomon, Samantha D.
    Schene, Miranda E.
    Hansen, Mette R.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cairns, Andrew G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Kulén, Martina
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wixe, Torbjörn
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Lindgren, Anders E. G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Krishnan, K. Syam
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hultgren, Scott J.
    Larsson, Christer
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Stallings, Christina L.
    Chemical disarming of isoniazid resistance in Mycobacterium tuberculosis2019In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, no 21, p. 10510-10517Article in journal (Refereed)
    Abstract [en]

    Mycobacterium tuberculosis (Mtb) killed more people in 2017 than any other single infectious agent. This dangerous pathogen is able to withstand stresses imposed by the immune system and tolerate exposure to antibiotics, resulting in persistent infection. The global tuberculosis (TB) epidemic has been exacerbated by the emergence of mutant strains of Mtb that are resistant to frontline antibiotics. Thus, both phenotypic drug tolerance and genetic drug resistance are major obstacles to successful TB therapy. Using a chemical approach to identify compounds that block stress and drug tolerance, as opposed to traditional screens for compounds that kill Mtb, we identified a small molecule, C10, that blocks tolerance to oxidative stress, acid stress, and the frontline antibiotic isoniazid (INH). In addition, we found that C10 prevents the selection for INH-resistant mutants and restores INH sensitivity in otherwise INH-resistant Mtb strains harboring mutations in the katG gene, which encodes the enzyme that converts the prodrug INH to its active form. Through mechanistic studies, we discovered that C10 inhibits Mtb respiration, revealing a link between respiration homeostasis and INH sensitivity. Therefore, by using C10 to dissect Mtb persistence, we discovered that INH resistance is not absolute and can be reversed.

  • 21.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Hansen, Sabine
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wall, Jessica
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Krishnan, Syam
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Begum, Afshan
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Niemiec, Moritz Sebastian
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Vaitkevicius, Karolis
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sauer, Uwe H.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sauer–Eriksson, A. Elisabeth
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA2016In: Cell chemical biology, ISSN 2451-9448, Vol. 23, no 3, p. 404-414Article in journal (Refereed)
    Abstract [en]

    The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes infectivity by reducing the expression of virulence genes, without compromising bacterial growth. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds within a hydrophobic pocket, located between the C- and N-terminal domains of PrfA, and interacts with residues important for PrfA activation. This indicates that these inhibitors maintain the DNA-binding helix-turn-helix motif of PrfA in a disordered state, thereby preventing a PrfA:DNA interaction. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

  • 22. Greene, Sarah E.
    et al.
    Pinkner, Jerome S.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Dodson, Karen W.
    Shaffer, Carrie L.
    Conover, Matt S.
    Livny, Jonathan
    Hadjifrangiskou, Maria
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Hultgren, Scott J.
    Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli2014In: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 5, no 6, p. UNSP e02038-Article in journal (Refereed)
    Abstract [en]

    Chaperone-usher pathway (CUP) pili are extracellular organelles produced by Gram-negative bacteria that mediate bacterial pathogenesis. Small-molecule inhibitors of CUP pili, termed pilicides, were rationally designed and shown to inhibit type 1 or P piliation. Here, we show that pilicide ec240 decreased the levels of type 1, P, and S piliation. Transcriptomic and proteomic analyses using the cystitis isolate UTI89 revealed that ec240 dysregulated CUP pili and decreased motility. Paradoxically, the transcript levels of P and S pilus genes were increased during growth in ec240, even though the level of P and S piliation decreased. In contrast, the most downregulated transcripts after growth in ec240 were from the type 1 pilus genes. Type 1 pilus expression is controlled by inversion of the fimS promoter element, which can oscillate between phase on and phase off orientations. ec240 induced the fimS phase off orientation, and this effect was necessary for the majority of ec240's inhibition of type 1 piliation. ec240 increased levels of the transcriptional regulators SfaB and PapB, which were shown to induce the fimS promoter phase off orientation. Furthermore, the effect of ec240 on motility was abolished in the absence of the SfaB, PapB, SfaX, and PapX regulators. In contrast to the effects of ec240, deletion of the type 1 pilus operon led to increased S and P piliation and motility. Thus, ec240 dysregulated several uropathogenic Escherichia coli (UPEC) virulence factors through different mechanisms and independent of its effects on type 1 pilus biogenesis and may have potential as an antivirulence compound. IMPORTANCE CUP pili and flagella play active roles in the pathogenesis of a variety of Gram-negative bacterial infections, including urinary tract infections mediated by UPEC. These are extremely common infections that are often recurrent and increasingly caused by antibiotic-resistant organisms. Preventing piliation and motility through altered regulation and assembly of these important virulence factors could aid in the development of novel therapeutics. This study increases our understanding of the regulation of these virulence factors, providing new avenues by which to target their expression.

  • 23.
    Horvath, Istvan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Weise, Christoph F
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Emma K
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sellstedt, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
    Chapman, Matthew
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Wolf-Watz, Magnus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mechanisms of Protein Oligomerization: Inhibitor of Functional Amyloids Templates α-Synuclein Fibrillation2012In: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, no 7, p. 3439-3444Article in journal (Refereed)
    Abstract [en]

    Small organic molecules that inhibit functional bacterial amyloid fibers, curli, are promising new antibiotics. Here we investigated the mechanism by which the ring-fused 2-pyridone FN075 inhibits fibrillation of the curli protein CsgA. Using a variety of biophysical techniques, we found that FN075 promotes CsgA to form off-pathway, non-amyloidogenic oligomeric species. In light of the generic properties of amyloids, we tested whether FN075 would also affect the fibrillation reaction of human α-synuclein, an amyloid-forming protein involved in Parkinson's disease. Surprisingly, FN075 stimulates α-synuclein amyloid fiber formation as measured by thioflavin T emission, electron microscopy (EM), and atomic force microscopy (AFM). NMR data on (15)N-labeled α-synuclein show that upon FN075 addition, α-synuclein oligomers with 7 nm radius form in which the C-terminal 40 residues remain disordered and solvent exposed. The polypeptides in these oligomers contain β-like secondary structure, and the oligomers are detectable by AFM, EM, and size-exclusion chromatography (SEC). Taken together, FN075 triggers oligomer formation of both proteins: in the case of CsgA, the oligomers do not proceed to fibers, whereas for α-synuclein, the oligomers are poised to rapidly form fibers. We conclude that there is a fine balance between small-molecule inhibition and templation that depends on protein chemistry.

  • 24.
    Jamroskovic, Jan
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Livendahl, Madeleine
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Eriksson, Jonas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sabouri, Nasim
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Identification of Compounds that Selectively Stabilize Specific G-Quadruplex Structures by Using a Thioflavin T-Displacement Assay as a Tool2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 52, p. 18932-18943Article in journal (Refereed)
    Abstract [en]

    Small molecules are used in the G-quadruplex (G4) research field in vivo and in vitro, and there are increasing demands for ligands that selectively stabilize different G4 structures. Thioflavin T (ThT) emits an enhanced fluorescence signal when binding to G4 structures. Herein, we show that ThT can be competitively displaced by the binding of small molecules to G4 structures and develop a ThT-displacement high-throughput screening assay to find novel and selective G4-binding compounds. We screened approximately 28 000 compounds by using three different G4 structures and identified eight novel G4 binders. Analysis of the structural conformation and stability of the G4 structures in presence of these compounds demonstrated that the four compounds enhance the thermal stabilization of the structures without affecting their structural conformation. In addition, all four compounds also increased the G4-structure block of DNA synthesis by Taq DNA polymerase. Also, two of these compounds showed selectivity between certain Schizosaccharomyces pombe G4 structures, thus suggesting that these compounds or their analogues can be used as selective tools for G4 DNA studies.

  • 25.
    Jamroskovic, Jan
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Obi, Ikenna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Movahedi, Anahita
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Chand, Karam
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sabouri, Nasim
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Identification of putative G-quadruplex DNA structures in S. pombe genome by quantitative PCR stop assay2019In: DNA Repair, ISSN 1568-7864, E-ISSN 1568-7856, Vol. 82, article id 102678Article in journal (Refereed)
    Abstract [en]

    In order to understand in which biological processes the four-stranded G-quadruplex (G4) DNA structures play a role, it is important to determine which predicted regions can actually adopt a G4 structure. Here, to identify DNA regions in Schizosaccharomyces pombe that fold into G4 structures, we first optimized a quantitative PCR (qPCR) assay using the G4 stabilizer, PhenDC3. We call this method the qPCR stop assay, and used it to screen for G4 structures in genomic DNA. The presence of G4 stabilizers inhibited DNA amplification in 14/15 unexplored genomic regions in S. pombe that encompassed predicted G4 structures, suggesting that at these sites the stabilized G4 structure formed an obstacle for the DNA polymerase. Furthermore, the formation of G4 structures was confirmed by complementary in vitro assays. In vivo, the S. pombe G4 unwinder Pif1 helicase, Pfh1, was associated with tested G4 sites, suggesting that the G4 structures also formed in vivo. Thus, we propose that the confirmed G4 structures in S. pombe form an obstacle for replication in vivo, and that the qPCR stop assay is a method that can be used to identify G4 structures. Finally, we suggest that the qPCR stop assay can also be used for identifying G4 structures in other organisms, as well as being adapted to screen for novel G4 stabilizers.

  • 26.
    Kindahl, Tomas
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Elin
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Development and optimization of simple one-step methods for the synthesis of 4-amino-substituted 1,8-naphthalimides2014In: European Journal of Organic Chemistry, ISSN 1434-193X, E-ISSN 1099-0690, no 28, p. 6175-6182Article in journal (Refereed)
    Abstract [en]

    The 1,8-naphthalimide central fragment can be found in a vast number of bioactive compounds and drugs in clinical trials, and can be recognized from their use as fluorescent probes. Of key importance for the fluorescent properties of the scaffold is the 4-amino substituent, which has also proven to be critical in several other chemical and biological applications. Because of the great interest in 1,8-naphthalimides in general, and 4-amino-substituted 1,8-naphthalimides in particular, we have developed and optimized one-step procedures with which to access these derivatives by using an experimental design approach. The multivariate studies of temperature, reaction time, and equivalents of substrates identified conditions with close to quantitative yields that could be applied to generate a range of 4-amino-substituted 1,8-naphthalimides in high yields.

  • 27.
    Kindahl, Tomas
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Efficient one-step synthesis of 4-amino substituted phthalimides and evaluation of their potential as fluorescent probes2014In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 12, no 25, p. 4461-4470Article in journal (Refereed)
    Abstract [en]

    The phthalimide scaffold is recognized from bioactive compounds and marketed drugs, but can also be used as fluorescent probes by introducing a 4-amino substituent. Unfortunately, a general and convenient method to synthesize various 4-amino substituted phthalimides has been lacking. To overcome this, an atom efficient one-step synthesis of 4-amino substituted phthalimides in good to excellent yields that tolerate a wide range of substituents has been developed. Several of the generated compounds display interesting solvatochromic properties with high quantum yield of fluorescence in non-polar solvents that are significantly reduced in polar protic solvents. Many of these compounds displayed non-toxic properties and non-detectable unspecific binding and can thus potentially be linked to a substrate and used as fluorescent probes. Furthermore, bioactive and fluorescent 4-amino substituted phthalimides with IC50-values in the low micromolar range in cell-based assays have been identified and could be used to study uptake and distribution. The developed convenient synthetic method is thus valuable not only to construct fluorescent probes and fluorescent bioactive compounds to gain information about target binding, but also from a structure activity point of view in the various areas where the phthalimides have displayed activity.

  • 28.
    Krishnan, K. Syam
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bengtsson, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Good, James A. D.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Mirkhanov, Shamil
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Lennart B. -Å.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Synthesis of fluorescent ring-fused 2-pyridone peptidomimetics2013In: Journal of Organic Chemistry, ISSN 0022-3263, E-ISSN 1520-6904, Vol. 78, no 23, p. 12207-12213Article in journal (Refereed)
    Abstract [en]

    Thiazolino fused 2-pyridones peptidomimetics are of significant biological importance due to their ability to interfere with adhesive fiber formation in uropathogenic Escherichia coli and oligomerization of amyloid fibres. We have developed an efficient synthetic route to fluorescent BODIPY analogues, with structural diversification from a key intermediate enabling introduction of C-2 substituents and late incorporation of the BODIPY moiety. A mild lithium halide mediated hydrolysis enabled preparation of peptidomimetic fluorophores with useful photophysical properties for further chemical biology applications.

  • 29.
    Kumar, Vipan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chand, Karam
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Guru Nanak Dev Univ, Punjab, India.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis of Various N-Substituted 4-Aryloxy/Thiophenoxy/Thioisopropyloxy-Phthalimides2017In: ChemistrySelect, ISSN 2365-6549, Vol. 2, no 11, p. 3293-3296Article in journal (Refereed)
    Abstract [en]

    N-substituted phthalimides have been used to target many biological systems with examples that are clinically used as drugs. Furthermore, N-substituted phthalimides can also be used in other settings such as in the preparation of polymers, as catalysts, and as protective groups. Because of all these important fields of application, the synthesis of phthalimides is well reported. However, synthetic methods to phthalimides with different heteroatom substituents in position 4 are lacking. The present work describes the development of robust synthetic methods to N-substituted 4-aryloxy/thiophenoxy/thioisopropyloxy-phthalimides. The developed methods allow for the introduction of these substituents through an atom efficient one-step synthesis, which gives good to excellent yields and tolerate a wide range of substituents.

  • 30.
    Livendahl, Madeleine
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jamroskovic, Jan
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Hedenström, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Görlich, T.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sabouri, Nasim
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis of phenanthridine spiropyrans and studies of their effects on G-quadruplex DNA2017In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 15, no 15, p. 3265-3275Article in journal (Refereed)
    Abstract [en]

    G-quadruplex (G4) DNA structures are involved in many important biological processes and can be linked to several human diseases. Drug-like low molecular weight compounds that target G4 structures are therefore interesting not only for their potential therapeutic properties but also for their potential use as chemical research tools. We report here on the development of methods to synthesize spiropyrans using a condensation-cyclisation reaction of quaternary salts of [small alpha]-methyl quinoline or phenanthridine with salicylaldehydes. Evaluation of the synthesized phenanthridine spiropyrans' interactions with G4 DNA was performed with a Thioflavin T displacement assay, circular dichroism, Taq DNA polymerase stop assay, and NMR. This revealed that the substitution pattern on the phenanthridine spiropyrans was very important for their ability to bind and stabilize G4 structures. Some of the synthesized low molecular weight spirocyclic compounds efficiently stabilized G4 structures without inducing structural changes by binding the first G-tetrad in the G4 structure.

  • 31.
    Livendahl, Madeleine
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jamroskovic, Jan
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Ivanova, Svetlana
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Demirel, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sabouri, Nasim
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Design and Synthesis of 2,2'-Diindolylmethanes to Selectively Target Certain G-Quadruplex DNA Structures2016In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 22, no 37, p. 13004-13009Article in journal (Refereed)
    Abstract [en]

    G-quadruplex (G4) structures carry vital biological functions, and compounds that selectively target certain G4 structures have both therapeutic potential and value as research tools. Along this line, 2,2'-diindolylmethanes have been designed and synthesized in this work based on the condensation of 3,6- or 3,7-disubstituted indoles with aldehydes. The developed class of compounds efficiently stabilizes G4 structures without inducing conformational changes in such structures. Furthermore, the 2,2'-diindolylmethanes target certain G4 structures more efficiently than others and this G4 selectivity can be altered by chemical modifications of the compounds.

  • 32.
    Pemberton, Nils
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Microwave-assisted synthesis and functionalization of 2-pyridones, 2-quinolones and other ring-fused 2-pyridones2006In: Microwave-assisted synthesis of hetreocycles / [ed] Erik Van der Eycken and C. Oliver Kappe, Springer-Verlag , 2006, p. 1-30Chapter in book (Other academic)
    Abstract [en]

    2-pyridones are important heterocycles with great applicability in medicinal chemistry and this core structure can be found in compounds with various biological/medicinal applications. Here we show how microwave-assisted chemistry can be used to effectively synthesize and functionalize substituted monocyclic 2-pyridones, 2-quinolones and other ring-fused 2-pyridones. The chapter covers recent advancements in this field mainly describing methods developed with instruments specially designed for microwave-assisted organic synthesis (MAOS).

  • 33. Pokrzywa, Malgorzata
    et al.
    Pawelek, Katarzyna
    Kucia, Weronika Elzbieta
    Sarbak, Szymon
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Effects of small-molecule amyloid modulators on a Drosophila model of Parkinson's disease2017In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, no 9, article id e0184117Article in journal (Refereed)
    Abstract [en]

    Alpha-synuclein (aS) amyloid formation is involved in Parkinson's disease (PD); therefore, small molecules that target aS and affect its aggregation are of interest as future drug candidates. We recently reported modified ring-fused 2-pyridones that modulate aS amyloid formation in vitro. Here, we describe the effects of such molecules on behavioral parameters of a Drosophila model of PD (i.e., flies expressing human aS), using a new approach (implemented in a commercially available FlyTracker system) to quantify fly mobility. FlyTracker allows for automated analysis of walking and climbing locomotor behavior, as it collects large sequences of data over time in an unbiased manner. We found that the molecules per se have no toxic or kinetic effects on normal flies. Feeding aS-expressing flies with the amyloid-promoting molecule FN075, remarkably, resulted in increased fly mobility at early time points; however, this effect switched to reduced mobility at later time points, and flies had shorter life spans than controls. In contrast, an amyloid inhibitor increased both fly kinetics and life span. In agreement with increased aS amyloid formation, the FN075-fed flies had less soluble aS, and in vitro aS-FN075 interactions stimulated aS amyloid formation. In addition to a new quantitative approach to probe mobility (available in FlyTracker), our results imply that aS regulates brain activity such that initial removal (here, by FN075-triggered assembly of aS) allows for increased fly mobility.

  • 34.
    Prasad, Bagineni
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jamroskovic, Jan
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Bhowmik, Sudipta
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, Kolkata, India.
    Kumar, Rajendra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Romell, Tajanena
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sabouri, Nasim
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Flexible Versus Rigid G-Quadruplex DNA Ligands: Synthesis of Two Series of Bis-indole Derivatives and Comparison of Their Interactions with G-Quadruplex DNA2018In: Chemistry - A European Journal, ISSN 0947-6539, E-ISSN 1521-3765, Vol. 24, no 31, p. 7926-7938Article in journal (Refereed)
    Abstract [en]

    Small molecules that target G-quadruplex (G4) DNA structures are not only valuable to study G4 biology but also for their potential as therapeutics. This work centers around how different design features of small molecules can affect the interactions with G4 DNA structures, exemplified by the development of synthetic methods to bis-indole scaffolds. Our synthesized series of bis-indole scaffolds are structurally very similar but differ greatly in the flexibility of their core structures. The flexibility of the molecules proved to be an advantage compared to locking the compounds in the presumed bioactive G4 conformation. The flexible derivatives demonstrated similar or even improved G4 binding and stabilization in several orthogonal assays even though their entropic penalty of binding is higher. In addition, molecular dynamics simulations with the c-MYC G4 structure showed that the flexible compounds adapt better to the surrounding. This was reflected by an increased number of both stacking and polar interactions with both the residues in the G4 DNA structure and the DNA residues just upstream of the G4 structure.

  • 35.
    Sharma, Sandeep K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Steneberg, Pär
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Vernersson-Lindahl, Emma
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Edlund, Helena
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Insulin-degrading enzyme prevents alpha-synuclein fibril formation in a nonproteolytical manner2015In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 5, article id 12531Article in journal (Refereed)
    Abstract [en]

    The insulin-degrading enzyme (IDE) degrades amyloidogenic proteins such as Amyloid β (Aβ) and Islet Amyloid Polypeptide (IAPP), i.e. peptides associated with Alzheimer's disease and type 2 diabetes, respectively. In addition to the protease activity normally associated with IDE function an additional activity involving the formation of stable, irreversible complexes with both Aβ and α-synuclein, an amyloidogenic protein involved in Parkinson's disease, was recently proposed. Here, we have investigated the functional consequences of IDE-α-synuclein interactions in vitro. We demonstrate that IDE in a nonproteolytic manner and at sub-stoichiometric ratios efficiently inhibits α-synuclein fibril formation by binding to α-synuclein oligomers making them inert to amyloid formation. Moreover, we show that, within a defined range of α-synuclein concentrations, interaction with α-synuclein oligomers increases IDE's proteolytic activity on a fluorogenic substrate. We propose that the outcomes of IDE-α-synuclein interactions, i.e. protection against α-synuclein amyloid formation and stimulated IDE protease activity, may be protective in vivo.

  • 36.
    Sharma, Sandeep K.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Insulin-degrading enzyme is activated by the C-terminus of alpha-synuclein2015In: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 466, no 2, p. 192-195Article in journal (Refereed)
    Abstract [en]

    The insulin-degrading enzyme (IDE) plays a key role in type-2 diabetes and typically degrades small peptides such as insulin, amyloid beta and islet amyloid polypeptide. We recently reported a novel non-proteolytical interaction in vitro between IDE and the Parkinson's disease 140-residue protein alpha-synuclein that resulted in dual effects: arrested alpha-synuclein oligomers and, simultaneously, increased IDE proteolysis activity. Here we demonstrate that these outcomes arise due to IDE interactions with the C-terminus of alpha-synuclein. Whereas a peptide containing the first 97 residues of alpha-synuclein did not improve IDE activity and its aggregation was not blocked by IDE, a peptide with the C-terminal 44 residues of alpha-synuclein increased IDE proteolysis to the same degree as full-length alpha-synuclein. Because the alpha-synuclein C-terminus is acidic, the interaction appears to involve electrostatic attraction with IDE's basic exosite, known to be involved in activation.

  • 37.
    Singh, Pardeep
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Krishnan, K Syam
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Kindahl, Tomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Ådén, Jörgen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Synthesis of multiring fused 2‑pyridones via a nitrene insertion reaction: fluorescent modulators of α‑synuclein amyloid formation2015In: Organic Letters, ISSN 1523-7060, E-ISSN 1523-7052, Vol. 17, no 24, p. 6194-6197Article in journal (Refereed)
    Abstract [en]

    An efficient, straightforward method for the synthesis of thiazolo-2-pyridone embedded peptidomimetic polyheterocycles via a catalyst-free, microwave-assisted, intramolecular C−H amination reaction is reported. All the synthesized polyheterocycles were evaluated for their fluorescent properties and effect on α-synuclein amyloid formation.

  • 38.
    Åberg, Veronica
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Das, Pralay
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hedenström, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pinkner, Jerome S
    Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
    Hultgren, Scott J
    Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA.
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli2008In: Bioorganic & Medicinal Chemistry Letters, Vol. 18, no 12, p. 3536-3540Article in journal (Refereed)
    Abstract [en]

    Ring-fused 2-pyridones, termed pilicides, are small synthetic compounds that inhibit pilus assembly in uropathogenic Escherichia coli. Their biological activity is clearly dependent upon a carboxylic acid functionality. Here, we present the synthesis and biological evaluation of carboxylic acid isosteres, including, for example, tetrazoles, acyl sulfonamides, and hydroxamic acids of two lead 2-pyridones. Two independent biological evaluations show that acyl sulfonamides and tetrazoles significantly improve pilicide activity against uropathogenic E. coli.

  • 39.
    Åberg, Veronica
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Norman, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Westermark, Andreas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Medicine).
    Sauer-Eriksson, Elisabeth
    Umeå University, Faculty of Science and Technology, Umeå Centre for Molecular Pathogenesis (UCMP) (Faculty of Science and Technology).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of A beta-peptide aggregation inhibitors2005In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 3, no 15, p. 2817-2823Article in journal (Refereed)
    Abstract [en]

    A reagent-free microwave-assisted decarboxylation procedure for carboxylic acid functionalized bicyclic 2-pyridones has been developed. This new method, based on microwave heating at 220 degrees C for 600 seconds in N-methyl pyrrolidone (NMP), proved to be practical and very efficient, resulting in decarboxylated 2-pyridones in near-quantitative yields. The decarboxylated products and the intermediate 2-pyridones in the form of carboxylic acid methyl esters and carboxylic acids were screened for their effect on A beta-peptide aggregation. Two out of the 21 2-pyridones described in this study inhibited amyloid formation of the Alzheimer A beta(1-40) peptide. The effect was seen even at a 4 : 1 ratio of 2-pyridone and monomeric A beta-peptide.

1 - 39 of 39
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf