umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Allard, Ingrid
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    A methodology to investigate the building energy performance gap2015Ingår i: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118Artikel i tidskrift (Övrigt vetenskapligt)
    Abstract [en]

    In order to evaluate compliance with requirements on building energy performance, it is necessary to find strategies to process discrepancies from the results of forward simulations in the design stage and of measurements in the operated stage. The gap between designed performance and measured performance is referred to as the “performance gap”. It can be divided into a procurement gap (between intended design and verified performance) and an operational gap (between verified performance and non-normalized measurements).  

    In this work we introduced a methodology for performance gap analysis, based on separating the procurement- and operational gap. An important component to do this is calibrations of calculations using measured data. The suggested methodology allows for more detailed verifications of building energy performance and can be used to study how indicators reflect the performance gap. The proposed methodology is tested using data from a well-documented and measured operated single family building, in sub-arctic climate in Sweden.

    The indicators studied in the verification were carefully analyzed. The methodology was found reliable based on the obtained results and a sensitivity analysis. An overall observation is that the applicability of the methodology depends on the accuracy of the hybrid method. The accuracy of the performance gap analysis per definition depends on the available information of the operated building, and consequently to access to extensive measured data.

  • 2.
    Andersson, Staffan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Predictions of energy demand in buildings using neural network techniques on performance data1996Ingår i: Proceedings of the 4th fourth symposium on building physics in the nordic countries, 1996, s. 51-58Konferensbidrag (Refereegranskat)
  • 3.
    Andersson, Staffan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Sjögren, Jan-Ulric
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Building performance based on measured data2011Ingår i: World Renewable Energy Congress – Sweden, 8–13 May, 2011, Linköping, Sweden: Energy End-Use Efficiency Issues / [ed] Moshfegh, Bahram, Linköping: Linköping University Electronic Press , 2011, s. 899-906Konferensbidrag (Refereegranskat)
    Abstract [en]

    With increasing liability for builders, the need for evaluation methods that focuses on the building’s performance and thus excludes the impact from residents’ behavior increases. This is not only of interest for new buildings but also when retrofitting existing buildings in order to reduce energy end-use.

    The investigation in this paper is based on extensive measurements on two fairly representative type of buildings, a single family building in Ekerö, Stockholm built 2000 and two apartment buildings in Umeå (1964) in order to extract key energy performance parameters such as the building’s heat loss coefficient, heat transfer via the ground and heat gained from the sun and used electricity.

    With access to pre-processed daily data from a 2-month periods, located close to the winter solstice, a robust estimate of the heat loss coefficient was obtained based on a regression analysis. For the single family building the variation was within 1% and for the two heavier apartment buildings an average variation of 2%, with a maximum of 4%, between different analyzed periods close to the winter solstice.

    The gained heating from the used electricity in terms of a gain factor could not be unambiguously extracted and therefore could only a range for the heat transfer via ground be estimated. The estimated range for the transfer via ground for the two apartment buildings were in very good agreement with those calculated according to EN ISO 13 370 and corresponded to almost 10% of the heating demand at the design temperature. For the single family building with an insulated slab and parts of the walls below ground level, the calculations gave slightly higher transfer than what was obtained from the regression analysis. For the estimated gained solar radiation no comparison has been possible to make, but the estimated gain exhibited an expected correlation with the global solar radiation data that was available for the two apartment buildings.

    Ladda ner fulltext (pdf)
    fulltext
  • 4.
    Andersson, Staffan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Sjögren, Jan-Ulric
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Prestanda- och betendeuppföljning av byggnaders energianvändning: etapp12010Rapport (Övrigt vetenskapligt)
  • 5.
    Brembilla, Christian
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Renman, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Soleimani-Mohseni, Mohsen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    The impact of control strategies on space heating system efficiency in low-energy buildings2019Ingår i: Building Services Engineering Research & Technology, ISSN 0143-6244, E-ISSN 1477-0849, Vol. 40, nr 6, s. 714-731Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this study efficiency factors measures the thermal energy performance for space heating. This study deals with the influence of control strategies on the effriciency factors of space heating and its distribution system. An adaptive control is developed and applied to two types of heating curves (linear and non-linear) for a low-energy building equipped with renewable energy sources. The building is modelled with a hybrid approach (law driven + data driven model). The design of the floor heating is calibrated and validated by assessing the uncertainty bands for low temperatures and mass flow rate. advantages and disavantages of linear and non-linear heating curves are highlighted to illustrate their impact on space heating thermodynamic behaviour and on the efficiency factors of the space heating system.

    Practical application: The study reveals that applying commercial building energy simulation software  is worthwhile to determine reliable performance predictions. Oversimplified building models, in particular when considering building thermal mass, are not capable of simulating the thermodynamic response of a building subjected to different control strategies. The application of different heating cuirves (linear and non-linear) to massless building models leaves the amount of mass flow rate delivered to the space heating unchanged when the building is subjected to sharp variations of the outdoor temperature.

  • 6.
    Brembilla, Christian
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Vuolle, Mika
    EQUA simualtion.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Practical support for evaluating efficiency factors of a space heating system in cold climates: modelling and simulation of hydronic panel radiator with different location of connection pipes2017Ingår i: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 10, nr 5, s. 1253-1267Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Plenty of technical norms, included in the EPBD umbrella, assess the performance of buildings or its sub-systems in terms of efficiency. In particular, EN 15316 and its sub-sections, determine the system energy requirements and the system efficiencies of space heating system. This paper focuses on the estimation of efficiencies for emission of hydronic radiators. The assessment of efficiencies for emission occurs by evaluating the amount of heat emitted  from the heat emitter and the extra thermal losses towards building envelope. The heat emitted from radiators varies during the heating up/cooling down phases. A factor that influences the heat emitted during these phases is the location of connection pipes of the radiator. Connection pipes can be located on opposite side or at the same side of the radiator. To better estimate the heat emitted from radiators a transient model with multiple storage elements is used in a building simulation model. Sensitivity analysis encompasses all  the possible variations on extra thermal losses due to the building location in different climates, the heaviness of active thermal mass and the type of radiator local control. The final outcome of this paper is a practical support where the designer can easily assess the efficiencies for emission of hydronic radiators  for Swedish buildings. As main result, (i) the efficiency for control of space heating system is higher in Northern climates than in Southern climates, (ii) heavy active thermal masses allow higher efficiencies for emission than light active thermal masses, (iii) connection pipes located on the same side of the radiator enable higher efficiencies for emission than pipes located on opposite side.

    Ladda ner fulltext (pdf)
    fulltext
  • 7.
    Brembilla, Christian
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Predictions' robustness of one-dimensional model of hydronic floor heating: novel validation methodology using a thermostatic booth simulator and uncertainty analysis2018Ingår i: Journal of Building Physics, ISSN 1744-2591, E-ISSN 1744-2583, Vol. 41, nr 5, s. 418-444Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hydronic floor heating models provide predictions in estimating heat transfer rates and floor surface temperature. Information on the model performance and range of validity of its results are often lacking in literature. Researchers have to know the accuracy and robustness of the model outcomes for performing energy and climate comfort calculations. This article proposes a novel validation methodology based on the uncertainty analysis of input data/parameters of one-dimensional model of hydronic floor heating tested in a thermostatic booth simulator and compared with experimental measurements. The main results are: (1) prediction accuracy between 0.4% and 2.9% for Tf and between 0.7% and 7.8% for qup when the serpentine has tube spacing (p) of 0.30 m, (2) prediction accuracy between 0.5% and 1.4% for Tf and between 8.7% and 12.9% for qup with p = 0.15m and (3) Tfld mostly affects predictions with oscillations between 6.2% and 2.2% for qup. This model provides robust and reliable predictions exclusively for qup when p = 0.30m.

  • 8.
    Brembilla, Christian
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Soleimani-Mohseni, Mohsen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Paradoxes in understanding the Efficiency Factors of Space Heating2019Ingår i: Energy Efficiency, ISSN 1570-646X, E-ISSN 1570-6478, Vol. 12, nr 3, s. 777-786Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Efficiency factors are here defined as the thermal energy performance indicators of the space heating. Until recently, the efficiency factors were assumed as one value for space heating located in any climate. This study addresses the problem of how the outdoor climate affects the efficiency factors of a space heating equipped with 1D model of hydronic floor heating. The findings show how the efficiency factors, computed with two numerical methods, are correlated with the solar radiation. This study highlights the paradoxes in understanding the results of efficiency factors analysis. This work suggests how to interpret and use the efficiency factors as a benchmark performance indicator.

    Ladda ner fulltext (pdf)
    fulltext
  • 9.
    Fick, Jerker
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Kemi.
    Pommer, Linda
    Åstrand, Anders
    Östin, Ronny
    Nilsson, Calle
    Andersson, Barbro
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Kemi.
    Ozonolysis of monoterpenes in mechanical ventilation systems2005Ingår i: ATMOSPHERIC ENVIRONMENT, Vol. 39, nr 34, s. 6315-25Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this investigation the ozonolysis of of three monoterpenes (alpha-pinene, Delta(3)-carene and limonene) was studied was studied in authentic mechanical ventilation systems, that included either a cross flow or a rotary heat exchanger. The effects of varying three experimental parameters were investigated: the level of ozone (25 and 75 ppb), the reaction time (25 and 75s), and the surface area in the ventilation duct (14.8 and 29.5 m(2)). The initial concentration of each of the monoterpenes was 20 ppb in every experiment, and 1-16% of the alpha-pinene, < 0.5-13% of the Delta(3)-carene, and < 0.5-16% of the limonene reacted. The effects of humidity (g m(-3)) and temperature of the outdoor and supply air, and water losses in the ventilation duct, were also evaluated. Experiments were based on a chemometric statistical design. Comparison of the results to theoretically calculated values showed that theoretical calculations underestimated the amounts that reacted in the ventilation systems by factors of 2-13, depending on the monoterpene and experimental settings.

  • 10.
    Lundin, Mikael
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Development and validation of a method aimed at estimating building performance parameters2004Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 36, nr 9, s. 905-914Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This paper presents a method for estimating the total heat loss coefficient, the total heat capacity and the gain factor based on measured data for the internal-external temperature difference, the domestic load and the supplied heat. Knowledge of these performance parameters is essential for a reliable energy demand forecast, close guidance and the accurate analysis of efficiency actions in buildings. The method was validated on measurements from a test cell. The values obtained for the performance parameters were in good agreement with a lumped capacitance analysis of the heating and cooling of the test cell. The deviation in the total heat loss coefficient, expressed in terms of the root mean square error, was between 2.5 and 9.4%. The values obtained for the total heat capacity were on average 9.8% higher than the reference value and for the gain factor the average deviation was 12.5%. The method shows promising signs of becoming a robust and accurate tool for extracting both the magnitude and the variation of the performance parameters, based on easily accessible data.

  • 11.
    Lundin, Mikael
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Further validation of a method aimed to estimate building performance parameters2005Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 37, nr 8, s. 867-871Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A further validation of an earlier developed neural network method for estimating the total heat loss coefficient (K-tot), the total heat capacity (C-tot) and the gain factor (alpha) based on measured diumal data of internal-external temperature difference, supplied heat for heating and "free heat" is presented. The validation was performed in laboratory scale, using a test cell, for three different cases of ventilation, without (constant)-, natural-, and forced ventilation. Earlier measurements from a building was also used in order to simulate a realistic energy use pattern and a rather stochastic behavior of alpha, which also was transformed to represent existing and future buildings in terms of the composition of their energy use. For all three types of ventilation and different types of buildings, the method was capable of estimating the three different performance parameters and their different dependencies. For K-tot, the RMSE was between 3 and 20% and for alpha, the deviation was between 9 and 19%.

  • 12.
    Ohlsson, Anders K. E.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Accurate and robust measurement of the external convective heat transfer coefficient based on error analysis2016Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 117, s. 83-90Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Accurate measurement of the convective heat transfer coefficient hc at external surfaces, e.g. at building facades and roofs, is of fundamental importance for heat transfer studies of the built environment. There are two basic methods for measurement of hc, the Loveday and Ito methods, which use one and two heated sensor units, respectively. To guide in selection of method and operating conditions, and in design of the sensor, we performed an error analysis. This included estimation of systematic errors, comparison between methods, and to established Nusselt number correlations, sensitivity analysis, and an evaluation of the measurement uncertainty. The main conclusion was that both methods, at forced convection, yielded measurement uncertainties at the 4 % level, provided that the Ito method was operated under the new condition, where one of its sensors remained unheated. However, at natural convection conditions, the Ito method cannot be operated with one of its sensors unheated, since hc is then zero at that sensor surface, which violates the method assumption that hc is the same at both sensors. Sensitivity analysis showed that systematic errors will be reduced by decreasing the sensor surface emissivity. The major source of measurement uncertainty was the conductive heat flux estimate.

  • 13.
    Ohlsson, K.E. Anders
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Sol-air thermometer measurement of heat transfer coefficient at building outdoor surface2018Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 132, s. 357-362Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Heat flow measurement with a heat flow meter is a standardized method (ISO 9869-1) to estimate thermal transmittance (U-value) of a building element. The heat flow meter is a thin plate mounted on top of the surface of the element, and measures the heat flux q through the plate. The measured q is the product of the difference in temperatures between exterior and interior environment, and the U-value. The heat transferred from the element is based on the radiant and the convective heat transfer.

    ISO 9869-1 specifies that the environment temperature Te “is a notional temperature" and it "cannot be measured directly” (section A.3.1). The air temperature Ta is proposed as a reasonable approximation for the indoor environment, while overcast conditions and absence of significant solar radiation are specified conditions for replacing Te with Ta for the exterior environment.

    The sol-air thermometer (SAT) measures the sol-air temperature Tsa, i.e. the equivalent temperature of the convective and the radiative environment. In the absence of solar radiation, Te = Tsa. SAT is a sensor consisting of a thin flat solid plate, of high thermal conductivity. The front side of the sensor is exposed to the environment, whose Tsa is to be measured, and the backside is thermally insulated. The temperature of the SAT-plate equals Tsa.

    In this work we propose introduction of the measured Te in the existing standard (ISO 9869-1). The method for measurement of Tsa, using the SAT, has been demonstrated experimentally for different periods, without solar radiation present and under stable climatic conditions.

  • 14.
    Ohlsson, K.E. Anders
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Sol-air thermometer measurement of heat transfer coefficient at building outdoor surface2018Ingår i: Cold Climate HVAC 2018: Sustainable Buildings in Cold Climates, Springer, 2018, s. 329-338Konferensbidrag (Refereegranskat)
    Abstract [en]

    There exists a building energy performance gap between theoretical simulations and the actual energy usage as measured. One potential reason for this gap might be a mismatch between predicted and measured values of the heat flux q through the building envelope. There is therefore a need to develop accurate and more cost-efficient methods for measurement of q. The standard ISO 9869-1 states that, at the outdoor surface, q = ho(Ts − Tenv), where ho is the overall heat transfer coefficient, including both convective and radiative components, Tenv is the environmental temperature, and Ts is the temperature of the building surface. It has previously been shown that the sol-air thermometer (SAT) could be used for convenient measurement of Tenv under dark conditions. In the present work, two SAT units, one heated and the other unheated, were employed for accurate outdoor measurements of ho in cold winter climate. Validation was performed by comparison of results from the new method against measurements, where previously established methodology was used. With current operating conditions, the measurement uncertainty was estimated to be 3.0 and 4.4%, for ho equal to 13 and 29 Wm−2K−1, respectively. The new SAT steady-state method is more cost-effective compared to previous methodology, in that the former involves fewer input quantities (surface emissivity and infrared radiation temperature are unnecessary) to be measured, while giving the same ho results, without any sacrifice in accuracy. SAT methodology thus enables measurement of both Tenv and ho, which characterizes the building thermal environment, and supports estimation of q.

  • 15.
    Ohlsson, K.E. Anders
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Step-transient method for measurement of the heat transfer coefficient at surfaces exposed to simulated building outdoor environments using the sol-air thermometer2018Ingår i: Journal of Building Physics, ISSN 1744-2591, E-ISSN 1744-2583, Vol. 42, nr 3, s. 373-387Artikel i tidskrift (Refereegranskat)
  • 16.
    Ohlsson, K.E. Anders
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Staffan, Grundberg
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Dynamic model for measurement of convective heat transfer coefficient at external building surfaces2016Ingår i: Journal of Building Engineering, ISSN 2352-7102, Vol. 7, s. 239-245Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Uncertainties in current empirical models for the convective heat transfer coefficient (CHTC) have large impact on the accuracy of building energy simulations (BES). These models are often based on measurements of the CHTC, using a heated gradient sensor, where steady-state convective air flow is assumed. If this requirement is not fulfilled there will be a dynamic measurement error. The objectives were to construct a validated dynamic model for the heated gradient sensor, and to use this model to improve accuracy by suggesting changes in sensor design and operating procedure. The linear thermal network model included three state-space variables, selected as the temperatures of the three layers of the heated gradient sensor. Predictions of the major time constant and temperature time evolution were in acceptable agreement with experimental results obtained from step-response experiments. Model simulations and experiments showed that the sensor time constant increases with decreasing CHTC value, which means that the sensor response time is at maximum under free convection conditions. Under free convection, the surface heat transfer resistance is at maximum, which cause enhanced heat loss through the sensor insulation layer. Guidelines are given for selection of sampling frequency, and for evaluation of dynamic measurement errors.

  • 17.
    Olofsson, Thomas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    A method for predicting the annual building heating demand based on limmited performance data1998Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 28, nr 1, s. 101-108Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In this paper, we present an investigation of the possibility to use a neural network combined with a quasi-physical description in order to predict the annual supplied space heating demand (P) for a number of small single family buildings located in the North of Sweden. As a quasi-physical description for P, we used measured diurnal performance data from a similar building or simulated data from a steady state energy simulation software. We show that the required supplied space heating demand may be predicted with an average accuracy of 5%. The predictions were based on access to measured diurnal data of indoor and outdoor temperatures and the supplied heating demand from a limited time period, ranging from 10 to 35 days. The prediction accuracy was found to be almost independent of what time of the year the measurements were obtained from, except for periods when the supplied heating demand was very small. For models based on measurements from May and fo some buildings from April and September, the prediction was less accurate.

  • 18.
    Olofsson, Thomas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Energy load predictions for buildings based on a total demand perspective1998Ingår i: Energy and Buildings, ISSN 0378-7788, E-ISSN 1872-6178, Vol. 28, nr 1, s. 109-116Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The outline of this work was to develop models for single family buildings, based on a total energy demand perspective, i.e., building-climate-inhabitants. The building-climate part was included by using a commercial dynamic energy simulation software. Whereas the influence from the inhabitants was implemented in terms of a predicted load for domestic equipment and hot water preparation, based on a reference building. The estimations were processed with neural network techniques. All models were based on access to measured diurnal data from a limited time period, ranging from 10 to 35 days. The annual energy predictions were found to be improved, compared to models based on only a building-climate perspective, when the domestic load was included. For periods with a small heating demand, i.e., May-September, the average accuracy was 7% and 4% for the heating and total energy load, respectively, whereas for the rest of the year the accuracy was on average 3% for both heating and total energy load.

  • 19.
    Olofsson, Thomas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Using CO2 concentrations to predict energy consumption in homes1998Ingår i: Proceedings of the 1998 ACEEE Summer study of energy efficiency in buildings, 1998, s. 211-222Konferensbidrag (Refereegranskat)
  • 20.
    Olofsson, Thomas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Ohlsson, K. E. Anders
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Measurement of the environmental temperature using the sol-air thermometer2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 132, s. 357-362Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Heat flow measurement with a heat flow meter is a standardized method (ISO 9869-1) to estimate thermal transmittance (U-value) of a building element. The heat flow meter is a thin plate mounted on top of the surface of the element, and measures the heat flux q through the plate. The measured q is the product of the difference in temperatures between exterior and interior environment, and the U-value. The heat transferred from the element is based on the radiant and the convective heat transfer.

    ISO 9869-1 specifies that the environment temperature Te “is a notional temperature" and it "cannot be measured directly” (section A.3.1). The air temperature Ta is proposed as a reasonable approximation for the indoor environment, while overcast conditions and absence of significant solar radiation are specified conditions for replacing Te with Ta for the exterior environment.

    The sol-air thermometer (SAT) measures the sol-air temperature Tsa, i.e. the equivalent temperature of the convective and the radiative environment. In the absence of solar radiation, Te = Tsa. SAT is a sensor consisting of a thin flat solid plate, of high thermal conductivity. The front side of the sensor is exposed to the environment, whose Tsa is to be measured, and the backside is thermally insulated. The temperature of the SAT-plate equals Tsa.

    In this work we propose introduction of the measured Te in the existing standard (ISO 9869-1). The method for measurement of Tsa, using the SAT, has been demonstrated experimentally for different periods, without solar radiation present and under stable climatic conditions.

    Ladda ner fulltext (pdf)
    fulltext
  • 21.
    Puttige, Anjan Rao
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Method to estimate the ground loads for missing periods in a monitored GSHP2019Ingår i: EUROPEAN GEOTHERMAL CONGRESS 2019: THE HAGUE, 11-14 JUNE 2019, 2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Monitoring a ground source heat pump can provide important insights into its working, but to study the behaviour of the borehole heat exchanger (BHE) we require monitored data for the whole period of operation. In practice, the monitored data often has periods of missing data. We propose a method to estimate the load during the periods of missing data based on the fluid temperature after that period. The method determined the missing load with negligible error, for the case of a BHE that behaves exactly like the model describing it. A sensitivity analysis showed that the estimated load is highly sensitive to errors in measured load and fluid temperature. The method was applied to a real monitored BHE, the magnitude of estimated loads were unreasonably high, but the overall deviation between the measured and simulated values of fluid temperature decreased. Therefore, the high magnitude of missing load compensates for the lack of agreement between the model and the measured data.

  • 22.
    Puttige, Anjan Rao
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Andersson, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Olofsson, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Method to estimate the ground loads for missing periods in a monitored GSHP2019Ingår i: European Geothermal Congress 2019, 2019Konferensbidrag (Övrigt vetenskapligt)
    Abstract [en]

    Monitoring a ground source heat pump can provide important insights into its working, but to study the behaviour of the borehole heat exchanger (BHE) we require monitored data for the whole period of operation. In practice, the monitored data often has periods of missing data. We propose a method to estimate the load during the periods of missing data based on the fluid temperature after that period. The method determined the missing load with negligible error, for the case of a BHE that behaves exactly like the model describing it. A sensitivity analysis showed that the estimated load is highly sensitive to errors in measured load and fluid temperature. The method was applied to a real monitored BHE, the magnitude of estimated loads were unreasonably high, but the overall deviation between the measured and simulated values of fluid temperature decreased. Therefore, the high magnitude of missing load compensates for the lack of agreement between the model and the measured data.

    Ladda ner fulltext (pdf)
    fulltext
  • 23.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Energieffektivt byggande i kallt klimat2012Ingår i: Bygg & teknik, ISSN 0281-658X, Vol. 104, nr 8, s. 39-42Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 24.
    Östin, Ronny
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Evaluation of a Single Family Low Energy Building in Cold Climate2017Ingår i: Energy Procedia, ISSN 1876-6102, E-ISSN 1876-6102, Vol. 132, s. 9-14Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Verification of energy performance and indoor climate by detailed field measurements in buildings is of great importance and promotes an assurance in the process of constructing low energy buildings and enables to utilize the full potential of energy efficiency measures.

    In the present work a single family building with a heated living space area of 175 m2 has been monitored. The heating system has a wood pellet stove for space heating (SH) and domestic hot water (DHW) and on the roof there are solar collectors in a southerly direction contributing to SH and DHW. SH is distributed by the ventilation system and an under floor heating system which is connected to a heat storage water tank. The incoming outdoor air is pre-heated in an earth-to-air heat exchanger and the building has a measured specific energy usage of 54 kWh/m2year which is far lower than today’s regulation at 130 kWh/m2year in the actual climate zone. The low energy use in the building are due to thick thermal insulation (average Um = 0.18 W/°C m2), an air tight envelope (q50 = 0.165 l/sm2), heat recovery of exhaust air (average 74 % efficiency) and free heat from the ground pre-heating of supply air which is above 2°C even for outdoor temperatures down to -27°C. An essential factor was the low rate of air changes during the heating season about 40 % of the regulated requirement. Measurements of indoor air quality like carbon dioxide occasionally indicated insufficient ventilation.

    Ladda ner fulltext (pdf)
    fulltext
  • 25.
    Östin, Ronny
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Eklund, Erik
    Johansson, Christer
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Energieffektivt byggande i kallt klimat2012Rapport (Övrigt vetenskapligt)
    Abstract [sv]

    Projektet energieffektivt byggande i kallt klimat är en fältstudie där 6 nybyggda lågenergihus i Umeåregionen utvärderats. Fyra byggnader är villor och två byggnader är flerbostadshus som är lokaliserade från Sikeå i norr till Nordmaling i söder.

    Byggnaderna har utrustats med trådlös mätutrustning för verifiering av energiprestanda för hela byggnaden ned till komponentnivå. Mätare för fukt och temperatur i luft och klimatskal har också installerats där de senare är placerade på olika djup i konstruktionen.

    Syftet med studien är att undersöka byggnadernas energiprestanda och vilka risker det finns med att bygga lågenergihus i kallt klimat. Genomförda fukt- och temperaturmätningar i konstruktionen visar idag inga tecken på röt- eller mögelangrepp, dock krävs längre mättid eftersom fukttransport är en långsam process.

    Baserat på energisignatur har uppmätt energianvändning i byggnaderna normalårskorrigerats och U-medelvärdet beräknats. Dessa värden har jämförts med projekterad energianvändning och U-medelvärde.

    Två av byggnaderna är utrustade med en markförlagd uteluftskanal, 36 respektive 10 m där den första lösningen visade sig eliminera behovet av eftervärmning av tilluften. Markförvärmning av uteluft är en enkel och effektiv metod för att höja temperaturen på inkomande uteluft, t.ex. vid -25°C värmdes inkommande luft till värmeväxlaren till +2°C.

    Mätningar av energianvändning visar att det går att bygga hus som använder betydligt mindre energi än boverkets krav på specifik energianvändning. Villorna uppvisar en specifik energianvändning enligt boverkets definition (energi för uppvärmning och tappvarmvatten dividerat med Atemp) från 59,7 till 91,8 kWh/m2, år och flerbostadshusen från 68 till 75,5 kWh/m2, år, vilket är lägre en gällande krav på 130 kWh/m2, år och vid elvärme 95 kWh/m2, år.

    Ladda ner fulltext (pdf)
    fulltext
  • 26.
    Östin, Ronny
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Nair, Gireesh
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Energy performance and lessons learned from detailed measurement of a passive house preschool in cold climate2019Ingår i: Is efficient sufficient?: eceee 2019 Summer Study on energy efficiency: Abstracts, European Council for an Energy Efficient Economy (ECEEE), 2019, s. 1433-1442Konferensbidrag (Refereegranskat)
    Abstract [en]

    Public passive house buildings are rare in high northern latitudes. This study reports on extensive measurements and evaluations of the most northerly (640 N) built passive house preschool in Sweden. The two storied preschool, built in 2014, has a total heated floor area of 1407 m2. The building was certified according to the international passive house standard. The building has several smart solutions such as demand controlled ventilation of individual rooms and automatic solar shading system.

    Energy measurements conducted during 2017-2018 showed that the preschool annually uses 44.4 kWhm-2, which is approximately 25 % lower than the passive house requirement for energy demand. However, the annual specific space heating requirement of 15 kWhm-2 and the peak heat power demand of 10 Wm-2 were not fulfilled. This non-compliance was mainly due to excessive ventilation during the heating season which was found to have 2.7 times higher air changes than the requirement in the Swedish building code. Furthermore, the building was found to be over heated from the sun during several occasions in a year. For example, excessive indoor air temperatures in the range 28 – 31°C were found during summer.

    The study revealed that the default winter operation by turning off the ventilation system during nights and weekends is continued in other seasons as well. This practice was not a “smart” approach for the air handling units as it was found to be one of the reasons for high indoor temperatures during non-winter months. Also, a mismatch between the operation of the automatic shading device and the ventilation control units was noted.

    The investigation shows that smart technical solutions in buildings may not be able to deliver its’ promised results if such systems are not monitored, adjusted and carefully evaluated. The paper identifies areas that need attention to ensure that a public building built to passive house standard actually deliver the energy efficiency it promises.

1 - 26 av 26
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf