Before the recognition of emerging environmental issues during the 20th century such as acid rain, mercury pollution, climate change and biodiversity loss, human activities had already significantly altered landscapes around the globe. As elsewhere in Europe, the introduction of agriculture into Sweden during the Bronze and Iron Ages led to changes in forest cover, especially in southern areas, but also more limited impacts in central and northern Sweden along river valleys and coastal areas. In central Sweden the rise and rapid spread of ore mining and metallurgy from the 12th and especially 13th century initiated a widespread reshaping of the landscape named after its mining heritage –Bergslagen (mining laws). This mineral rich 89,000 km2 region encompasses ~5000 metallurgical sites (furnaces, smelters, foundries, forges) and ~10000 mines registered in the Swedish National Antiquities Board’s database.
Analyses of >30 lake-sediment records using a combination of geochemical, diatom and pollen analyses, in combination with archaeological and historical records and toponyms, add important details to the early, poorly documented history of mining/metallurgy as well as provide insights into some of the environmental impacts across this large landscape. These impacts included damming of lakes and regulation of watercourses for waterpower, increase in erosion, emission of metals to surface waters and the atmosphere (and leaching from slag piles), decrease in forest cover and changes in water quality. The discontinuous appearance of pollen from cultivated plants (cereals) indicates some limited settlement before the 12th century, but the regular occurrence thereafter of cereal pollen together with a sharp increase in charcoal particles and geochemical evidence of mining/metallurgical activities, indicates mining/metallurgy was a driving force for settlement. Decline in forest cover was gradual from the 13th century, but was more significant from the late 16th century when iron and copper production increased exponentially. The increased demand for charcoal and increased agriculture, including an expansion of summer forest farms, contributed to a reduction in inferred forest cover to 40–80% – as compared to pre-anthropogenic (≤2000 BP) values of 84–95%. From the 16th century charcoal became the limiting resource within Bergslagen and metallurgy expanded to regions adjoining Bergslagen, contributing to a more widespread decline in forest cover also beyond the Bergslagen landscape.
In association with the increase in land-use activities and resulting changes in vegetation cover, there was a decline (20–50%) in spectrally inferred lake-water total organic carbon, which we hypothesize resulted from a decreased pool of labile soil carbon. In some lakes closely connected with blast furnaces, where the peasant-miners also lived and farmed, there was an increase in diatom-inferred lake-water pH – as observed previously in SW Sweden in association with Iron Age land use. Only in a suite of lakes in close proximity to the smelting of copper sulfide ores in the surroundings of Falun was there evidence for pre-20th century acidification.
While current rates of environmental change may be unprecedented, they build on an already modified landscape. Because pre-industrial conditions, i.e., pre-19th century, are often used as a reference level the scale of current changes may underestimate the full extent of ecosystem and environmental impacts.