umu.sePublications
Change search
Refine search result
1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bailey, Leslie
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Muschiol, Sandra
    Engström, Patrik
    Nordström, Peter
    Henriques-Normark, Birgitta
    Waldenström, Anders
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Elofsson, Mikael
    Wolf-Watz, Hans
    Bergström, Sven
    Small molecule inhibitors reveal a role for the Chlamydia type III secretion system in iron acquisitionManuscript (Other academic)
  • 2. Bao, Xiaofeng
    et al.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Sturdevant, Gail L.
    Gong, Zheng
    Xu, Shuang
    Caldwell, Harlan D.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fan, Huizhou
    Benzylidene acylhydrazides inhibit chlamydial growth in a type III secretion- and iron chelation-independent manner2014In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 196, no 16, p. 2989-3001Article in journal (Refereed)
    Abstract [en]

    Chlamydiae are widespread Gram-negative pathogens of humans and animals. Salicylidene acylhydrazides, developed as inhibitors of type III secretion system (T3SS) in Yersinia spp., have an inhibitory effect on chlamydial infection. However, these inhibitors also have the capacity to chelate iron, and it is possible that their antichlamydial effects are caused by iron starvation. Therefore, we have explored the modification of salicylidene acylhydrazides with the goal to uncouple the antichlamydial effect from iron starvation. We discovered that benzylidene acylhydrazides, which cannot chelate iron, inhibit chlamydial growth. Biochemical and genetic analyses suggest that the derivative compounds inhibit chlamydiae through a T3SS-independent mechanism. Four single nucleotide polymorphisms were identified in a Chlamydia muridarum variant resistant to benzylidene acylhydrazides, but it may be necessary to segregate the mutations to differentiate their roles in the resistance phenotype. Benzylidene acylhydrazides are well tolerated by host cells and probiotic vaginal Lactobacillus species and are therefore of potential therapeutic value.

  • 3.
    Bergqvist, Joakim
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Forsman, Oscar
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Larsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Näslund, Jonas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Lilja, Tobias
    Engdahl, Cecilia
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lindström, Anders
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Ahlm, Clas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Evander, Magnus
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Arctic Research Centre at Umeå University.
    Bucht, Göran
    [ 1 ] CBRN Def & Secur, Swedish Def Res Agcy, SE-90182 Umea, Sweden.
    Detection and Isolation of Sindbis Virus from Mosquitoes Captured During an Outbreak in Sweden, 20132015In: Vector Borne and Zoonotic Diseases, ISSN 1530-3667, E-ISSN 1557-7759, Vol. 15, no 2, p. 133-140Article in journal (Refereed)
    Abstract [en]

    Mosquito-borne alphaviruses have the potential to cause large outbreaks throughout the world. Here we investigated the causative agent of an unexpected Sindbis virus (SINV) outbreak during August-September, 2013, in a previously nonendemic region of Sweden. Mosquitoes were collected using carbon dioxide-baited CDC traps at locations close to human cases. The mosquitoes were initially screened as large pools by SINV-specific quantitative RT-PCR, and the SINV-positive mosquitoes were species determined by single-nucleotide polymorphism (SNP) analysis, followed by sequencing the barcoding region of the cytochrome oxidase I gene. The proportion of the collected mosquitoes was determined by a metabarcoding strategy. By using novel strategies for PCR screening and genetic typing, a new SINV strain, Lovanger, was isolated from a pool of 1600 mosquitoes composed of Culex, Culiseta, and Aedes mosquitoes as determined by metabarcoding. The SINV-positive mosquito Culiseta morsitans was identified by SNP analysis and sequencing. After whole-genome sequencing and phylogenetic analysis, the SINV Lovanger isolate was shown to be most closely similar to recent Finnish SINV isolates. In conclusion, within a few weeks, we were able to detect and isolate a novel SINV strain and identify the mosquito vector during a sudden SINV outbreak.

  • 4.
    Dahlgren, Markus K
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Zetterström, Caroline E
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Linusson, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Statistical molecular design of a focused salicylidene acylhydrazide library and multivariate QSAR of inhibition of type III secretion in the Gram-negative bacterium Yersinia2010In: Bioorganic & Medicinal Chemistry, ISSN 0968-0896, E-ISSN 1464-3391, Vol. 18, no 7, p. 2686-2703Article in journal (Refereed)
    Abstract [en]

    A combined application of statistical molecular design (SMD), quantitative structure-activity relationship (QSAR) modeling and prediction of new active compounds was effectively used to develop salicylidene acylhydrazides as inhibitors of type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. SMD and subsequent synthesis furnished 50 salicylidene acylhydrazides in high purity. Based on data from biological evaluation in T3S linked assays 18 compounds were classified as active and 25 compounds showed a dose-dependent inhibition. The 25 compounds were used to compute two multivariate QSAR models and two multivariate discriminant analysis models were computed from both active and inactive compounds. Three of the models were used to predict 4416 virtual compounds in consensus and eight new compounds were selected as an external test set. Synthesis and biological evaluation of the test set in Y. pseudotuberculosis and the intracellular pathogen Chlamydia trachomatis validated the models. Y. pseudotuberculosis and C. trachomatis cell-based infection models showed that compounds identified in this study are selective and non-toxic inhibitors of T3S dependent virulence.

  • 5.
    Engström, Patrik
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nguyen, Bidong D.
    Normark, Johan
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Nilsson, Ingela
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Bastidas, Robert J.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Elofsson, Mikael
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fields, Kenneth A.
    Valdivia, Raphael H.
    Wolf-Watz, Hans
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Bergström, Sven
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Mutations in hemG Mediate Resistance to Salicylidene Acylhydrazides, Demonstrating a Novel Link between Protoporphyrinogen Oxidase (HemG) and Chlamydia trachomatis Infectivity2013In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 195, no 18, p. 4221-4230Article in journal (Refereed)
    Abstract [en]

    Salicylidene acylhydrazides (SAHs) inhibit the type III secretion system (T3S) of Yersinia and other Gram-negative bacteria. In addition, SAHs restrict the growth and development of Chlamydia species. However, since the inhibition of Chlamydia growth by SAH is suppressed by the addition of excess iron and since SAHs have an iron-chelating capacity, their role as specific T3S inhibitors is unclear. We investigated here whether SAHs exhibit a function on C. trachomatis that goes beyond iron chelation. We found that the iron-saturated SAH INP0341 (IS-INP0341) specifically affects C. trachomatis infectivity with reduced generation of infectious elementary body (EB) progeny. Selection and isolation of spontaneous SAH-resistant mutant strains revealed that mutations in hemG suppressed the reduced infectivity caused by IS-INP0341 treatment. Structural modeling of C. trachomatis HemG predicts that the acquired mutations are located in the active site of the enzyme, suggesting that IS-INP0341 inhibits this domain of HemG and that protoporphyrinogen oxidase (HemG) and heme metabolism are important for C. trachomatis infectivity.

  • 6.
    Enquist, Per-Anders
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Hägglund, Ulrik
    Creative Antibiotics, Tvistevägen 48, SE90719 Umeå, Sweden.
    Lindström, Pia
    Creative Antibiotics, Tvistevägen 48, SE90719 Umeå, Sweden.
    Norberg-Scherman, Henrik
    Creative Antibiotics, Tvistevägen 48, SE90719 Umeå, Sweden.
    Sundin, Charlotta
    Creative Antibiotics, Tvistevägen 48, SE90719 Umeå, Sweden.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Derivatives of 8-hydroxyquinoline-antibacterial agents that target intra- and extracellular Gram-negative pathogens2012In: Bioorganic & Medicinal Chemistry Letters, ISSN 0960-894X, E-ISSN 1090-2120, Vol. 22, no 10, p. 3550-3553Article in journal (Refereed)
    Abstract [en]

    Small molecule screening identified 5-nitro-7-((4-phenylpiperazine-1-yl-)methyl)quinolin-8-ol INP1750 as a putative inhibitor of type III secretion (T3S) in the Gram-negative pathogen Yersinia pseudotuberculosis. In this study we report structure-activity relationships for inhibition of T3S and show that the most potent compounds target both the extracellular bacterium Y. pseudotuberculosis and the intracellular pathogen Chlamydia trachomatis in cell-based infection models.

  • 7.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Kulén, Martina
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Krishnan, K. Syam
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Bahnan, Wael
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Núñez-Otero, Carlos
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Nilsson, Ingela
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Wede, Emma
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    de Groot, Esmee
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bergström, Sven
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Thiazolino 2-pyridone amide isosteres as inhibitors of Chlamydia trachomatis infectivity2017In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 60, no 22, p. 9393-9399Article in journal (Refereed)
    Abstract [en]

    Chlamydia trachomatis is a global health burden due to its prevalence as a sexually transmitted disease and as the causative agent of the eye infection trachoma. We recently discovered 3-amido thiazolino 2-pyridones which attenuated C. trachomatis infectivity without affecting host cell or commensal bacteria viability. We present here the synthesis and evaluation of nonhydrolyzable amide isosteres based on this class, leading to highly potent 1,2,3-triazole based infectivity inhibitors (EC50 ≤ 20 nM).

  • 8.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nunez-Otero, Carlos
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bahnan, Wael
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Krishnan, K. Syam
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Salin, Olli
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Engström, Patrik
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Svensson, Richard
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Artursson, Per
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bergström, Sven
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity2016In: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, no 5, p. 2094-2108Article in journal (Refereed)
    Abstract [en]

    The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 <= 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 mu M. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.

  • 9.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Role of birds in the biology of Lyme disease Borrelia2001Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Lyme disease is a tick-transmitted illness caused by Borrelia burgdorferi sensu lato (s.l.), a group of spirochetes with at least three human pathogenic species, B. burgdorferi sensu stricto, B. afzelii and B. garinii. These spirochetes cycle between vertebrate reservoirs, mainly rodents, and ixodid ticks. Both terrestrial birds and seabirds can be infected with B. burgdorferi s.l. but the function of birds as reservoirs is largely unknown, even though they are potentially important epidemiologically due to their ability to carry ectoparasites and microorganisms over long distances. This thesis describes the role of birds in Lyme disease Borrelia biology in general and Borrelia ecology and epidemiology in particular.

    B. burgdorferi s.l. has previously been detected in the seabird tick Ixodes uriae and an enzootic Borrelia cycle distinct from terrestrial Borrelia cycles has been described. In this study B. garinii was isolated from the proposed seabird reservoirs and the tick I. uriae infesting them. The strains isolated did not show evident differences from human pathogenic B. garinii strains, indeed 7/8 strains had an ospC allele associated with Borrelia causing disseminated Lyme disease.

    Antibodies against B. burgdorferi s.l. were detected in people frequently bitten by I. uriae. Thus the marine enzootic Borrelia cycle may be a risk for humans, either by direct transfer of the spirochete from /. uriae or via introduction of Borrelia into a terrestrial enzootic Borrelia cycle.

    In order to investigate the role of passerine (Passeriformes) birds as amplification hosts in the terrestrial Borrelia cycle, experimental infections of canary finches (Serinus canaria) and redwing thrushes (Turdus iliacus) were carried out. The result showed that B. burgdorferi s.l. can persist for several months in passerine birds and the infection in redwing thrushes can be reactivated in response to migration. Thus, birds may be more infectious to ticks during their migration and therefore important long-range disseminators of B. burgdorferi s.l.

    Migration in birds is associated with elevated stress hormones that in turn can cause reactivation of latent infections. Lyme disease in humans could perhaps be activated when the immune response is modulated by stress. Herein I describe a patient with a stress activated latent Borrelia infection, which supports this hypothesis.

    The seabird tick I. uriae has a circumpolar distribution in both the northern and southern hemispheres and in this study identical B. garinii flagellin gene (flaB) sequences were detected in I. uriae from these hemispheres, indicating a transequatorial transport of B. garinii. Parsimony analysis of I. uriae ITS2 and 16S rDNA sequences suggested that northern and southern I. uriae might be reproductively separated. Therefore passive transport of infected ticks between the polar regions is unlikely and instead seabirds probably carry an active Borrelia infection during their migration.

    In conclusion, this work shows that migrating seabirds and passerine birds probably are important for the long-range dispersal of B. burgdorferi s.l., and that this mechanism of dispersal could be important for the distribution of human Lyme disease.

  • 10.
    Gylfe, Åsa
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Cajander, Sara
    Wahab, Tara
    Angelin, Martin
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Melioidos: en viktig diagnos vid svår sjukdom efter utlandsresa2017In: Läkartidningen, ISSN 0023-7205, E-ISSN 1652-7518, Vol. 114, article id ERRRArticle in journal (Other academic)
  • 11.
    Gylfe, Åsa
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Olsen, Björn
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Infectious Diseases.
    Strasevicius, Darius
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Marti Ras, Nuria
    Weihe, Pál
    Noppa, Laila
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Östberg, Yngve
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Baranton, Guy
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Isolation of Lyme disease Borrelia from puffins (Fratercula arctica) and seabird ticks (Ixodes uriae) on the Faeroe Islands1999In: Journal of Clinical Microbiology, ISSN 0095-1137, E-ISSN 1098-660X, Vol. 37, no 4, p. 890-896Article in journal (Refereed)
    Abstract [en]

    This is the first report on the isolation of Lyme disease Borrelia from seabirds on the Faeroe Islands and the characteristics of its enzootic cycle. The major components of the Borrelia cycle include the puffin (Fratercula arctica) as the reservoir and Ixodes uriae as the vector. The importance of this cycle and its impact on the spread of human Lyme borreliosis have not yet been established. Borrelia spirochetes isolated from 2 of 102 sampled puffins were compared to the borreliae previously obtained from seabird ticks, I. uriae. The rrf-rrl intergenic spacer and the rrs and the ospC genes were sequenced and a series of phylogenetic trees were constructed. Sequence data and restriction fragment length polymorphism analysis grouped the strains together with Borrelia garinii. In a seroepidemiological survey performed with residents involved in puffin hunting on the Faeroe Islands, 3 of 81 serum samples were found to be positive by two commonly used clinical tests: a flagellin-based enzyme-linked immunosorbent assay (ELISA) and Western blotting. These three positive serum samples also had high optical density values in a whole-cell ELISA. The finding of seropositive Faeroe Islanders who are regularly exposed to I. uriae indicate that there may be a transfer of B. garinii by this tick species to humans.

  • 12. Hanski, Leena
    et al.
    Genina, Natalja
    Uvell, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Malinovskaja, Kristina
    Gylfe, Asa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Laaksonen, Timo
    Kolakovic, Ruzica
    Makila, Ermei
    Salonen, Jarno
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hirvonen, Jouni
    Sandler, Niklas
    Vuorela, Pia M.
    Inhibitory Activity of the Isoflavone Biochanin A on Intracellular Bacteria of Genus Chlamydia and Initial Development of a Buccal Formulation2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 12, article id e115115Article in journal (Refereed)
    Abstract [en]

    Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump inhibitors, but their therapeutic use is limited by poor water-solubility and intense first-pass metabolism. Here, we report on effects of isoflavones against C. pneumoniae and C. trachomatis and describe buccal permeability and initial formulation development for biochanin A. Biochanin A was the most potent Chlamydia growth inhibitor among the studied isoflavones, ;with an IC50=12 mu M on C. pneumoniae inclusion counts and 6.5 mu M on infectious progeny production, both determined by immunofluorescent staining of infected epithelial cell cultures. Encouraged by the permeation of biochanin A across porcine buccal mucosa without detectable metabolism, oromucosal film formulations were designed and prepared by a solvent casting method. The film formulations showed improved dissolution rate of biochanin A compared to powder or a physical mixture, presumably due to the solubilizing effect of hydrophilic additives and presence of biochanin A in amorphous state. In summary, biochanin A is a potent inhibitor of Chlamydia spp., and the in vitro dissolution results support the use of a buccal formulation to potentially improve its bioavailability in antichlamydial or other pharmaceutical applications.

  • 13.
    Kauppi, Anna M.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Edin, Alicia
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Ziegler, Ingrid
    Mölling, Paula
    Sjöstedt, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Strålin, Kristoffer
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Metabolites in Blood for Prediction of Bacteremic Sepsis in the Emergency Room2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 1, article id e0147670Article in journal (Refereed)
    Abstract [en]

    A metabolomics approach for prediction of bacteremic sepsis in patients in the emergency room (ER) was investigated. In a prospective study, whole blood samples from 65 patients with bacteremic sepsis and 49 ER controls were compared. The blood samples were analyzed using gas chromatography coupled to time-of-flight mass spectrometry. Multivariate and logistic regression modeling using metabolites identified by chromatography or using conventional laboratory parameters and clinical scores of infection were employed. A predictive model of bacteremic sepsis with 107 metabolites was developed and validated. The number of metabolites was reduced stepwise until identifying a set of 6 predictive metabolites. A 6-metabolite predictive logistic regression model showed a sensitivity of 0.91(95% CI 0.69-0.99) and a specificity 0.84 (95% CI 0.58-0.94) with an AUC of 0.93 (95% CI 0.89-1.01). Myristic acid was the single most predictive metabolite, with a sensitivity of 1.00 (95% CI 0.85-1.00) and specificity of 0.95 (95% CI 0.74-0.99), and performed better than various combinations of conventional laboratory and clinical parameters. We found that a metabolomics approach for analysis of acute blood samples was useful for identification of patients with bacteremic sepsis. Metabolomics should be further evaluated as a new tool for infection diagnostics.

  • 14.
    Marwaha, Sania
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Uvell, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Salin, Olli
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Lindgren, Anders E. G.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Silver, Jim
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    N-acylated derivatives of sulfamethoxazole and sulfafurazole inhibit intracellular growth of Chlamydia trachomatis2014In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 58, no 5, p. 2968-2971Article in journal (Refereed)
    Abstract [en]

    Antibacterial compounds with novel modes of action are needed for management of bacterial infections. Here we describe a high-content screen of 9,800 compounds identifying acylated sulfonamides as novel growth inhibitors of the sexually transmitted pathogen Chlamydia trachomatis. The effect was bactericidal and distinct from that of sulfonamide antibiotics, as para-aminobenzoic acid did not reduce efficacy. Chemical inhibitors play an important role in Chlamydia research as probes of potential targets and as drug development starting points.

  • 15.
    Mojica, Sergio A.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Salin, Olli
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Bastidas, Robert J.
    Sunduru, Naresh
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hedenström, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, C. David
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Núñez-Otero, Carlos
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Engström, Patrik
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Valdivia, Raphael H.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    N-acylated derivatives of sulfamethoxazole block Chlamydia fatty acid synthesis and interact with FabF2017In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 61, no 10, article id e00716-17Article in journal (Refereed)
    Abstract [en]

    The type II fatty acid synthesis (FASII) pathway is essential for bacterial lipid biosynthesis and continues to be a promising target for novel antibacterial compounds. Recently, it has been demonstrated that Chlamydia is capable of FASII and this pathway is indispensable for Chlamydia growth. Previously, a high-content screen with Chlamydia trachomatis-infected cells was performed, and acylated sulfonamides were identified to be potent growth inhibitors of the bacteria. C. trachomatis strains resistant to acylated sulfonamides were isolated by serial passage of a wild-type strain in the presence of low compound concentrations. Results from whole-genome sequencing of 10 isolates from two independent drug-resistant populations revealed that mutations that accumulated in fabF were predominant. Studies of the interaction between the FabF protein and small molecules showed that acylated sulfonamides directly bind to recombinant FabF in vitro and treatment of C. trachomatis-infected HeLa cells with the compounds leads to a decrease in the synthesis of Chlamydia fatty acids. This work demonstrates the importance of FASII for Chlamydia development and may lead to the development of new antimicrobials.

  • 16.
    Mojica, Sergio
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Eriksson, Anna U.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Davis, Rohan A.
    Bahnan, Wael
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Red Fluorescent Chlamydia trachomatis Applied to Live Cell Imaging and Screening for Antibacterial Agents2018In: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, article id 3151Article in journal (Refereed)
    Abstract [en]

    In this study, we describe the application of a transformed Chlamydia trachomatis strain constitutively expressing the red fluorescent protein mCherry, to allow real-time monitoring of the infection cycle and screening for agents that block replication of C. trachomatis. The red fluorescent C. trachomatis strain was detected autonomously without antibody staining and was equally susceptible to doxycycline as the wild type strain. A high-throughput screening assay was developed using the transformed strain and automated fluorescence microscopy. The assay was used in a pilot screen of a 349 compound library containing natural products from Australian flora and fauna. Compounds with anti-chlamydial activity were tested for dose response and toxicity to host cells and two non-toxic compounds had 50% effective concentration (EC50) values in the low micromolar range. Natural products are valuable sources for drug discovery and the identified Chlamydia growth inhibition may be starting points for future drug development. Live cell imaging was used to visualize growth of the red fluorescent C. trachomatis strain over time. The screening assay reduced workload and reagents compared to an assay requiring immunostaining and could further be used to monitor the development of Chlamydia inclusions and anti-chlamydial effect in real time.

  • 17.
    Müller, Daniel C.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Kauppi, Anna
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Edin, Alicia
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Sjöstedt, Anders B.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Phospholipid Levels in Blood during Community-Acquired Pneumonia2019In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 14, no 5, article id e0216379Article in journal (Refereed)
    Abstract [en]

    Phospholipids, major constituents of bilayer cell membranes, are present in large amounts in pulmonary surfactant and play key roles in cell signaling. Here, we aim at finding clinically useful disease markers in community-acquired pneumonia (CAP) using comprehensive phospholipid profiling in blood and modeling of changes between sampling time points. Serum samples from 33 patients hospitalized with CAP were collected at admission, three hours after the start of intravenous antibiotics, Day 1 (at 12–24 h), Day 2 (at 36–48 h), and several weeks after recovery. A profile of 75 phospholipid species including quantification of the bioactive lysophosphatidylcholines (LPCs) was determined using liquid chromatography coupled to time-of-flight mass spectrometry. To control for possible enzymatic degradation of LPCs, serum autotaxin levels were examined. Twenty-two of the 33 patients with a clinical diagnosis of CAP received a laboratory-verified CAP diagnosis by microbial culture or microbial DNA detection by qPCR. All major phospholipid species, especially the LPCs, were pronouncedly decreased in the acute stage of illness. Total and individual LPC concentrations increased shortly after the initiation of antibiotic treatment, concentrations were at their lowest 3h after the initiation, and increased after Day 1. The total LPC concentration increased by a change ratio of 1.6–1.7 between acute illness and Day 2, and by a ratio of 3.7 between acute illness and full disease resolution. Autotaxin levels were low in acute illness and showed little changes over time, contradicting a hypothesis of enzymatic degradation causing the low levels of LPCs. In this sample of patients with CAP, the results demonstrate that LPC concentration changes in serum of patients with CAP closely mirrored the early transition from acute illness to recovery after the initiation of antibiotics. LPCs should be further explored as potential disease stage biomarkers in CAP and for their potential physiological role during recovery.

  • 18. Ovchinnikova, Olga
    et al.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Bailey, Leslie
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nordström, Anna
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Rehabilitation Medicine. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Rudling, Mats
    Jung, Christian
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Waldenström, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Hansson, Göran K
    Nordström, Peter
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Geriatric Medicine.
    Osteoprotegerin promotes fibrous cap formation in atherosclerotic lesions of ApoE-deficient mice--brief report.2009In: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 29, no 10, p. 1478-1480Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: Osteoprotegerin (OPG) is a tumor necrosis factor receptor-related cytokine, initially found to inhibit osteoclastogenesis. In the present study we investigated the effect of OPG treatment on atherosclerosis. METHODS AND RESULTS: Hypercholesterolemic apoe(-/-) mice were treated with recombinant 15 mg/kg OPG or vehicle injections twice a week for 10 consecutive weeks. Mice treated with OPG showed increased amounts of smooth muscle cells and collagen within the atherosclerotic lesions. OPG treatment did not affect atherosclerotic lesion size (8.2% versus 7.6%) or total vessel area but led to a 250% increase in lesion collagen, formation of mature collagen fibers in subendothelial fibrous caps, and upregulated mRNA for lysyl oxidase that promotes collagen crosslinking. In cell culture studies, OPG promoted cell proliferation in rat aortic smooth muscle cells. In contrast, OPG treatment did not affect markers of vascular or systemic inflammation. CONCLUSIONS: OPG treatment promotes smooth muscle accumulation, collagen fiber formation, and development of fibrous caps but does not affect inflammatory properties of atherosclerotic lesions. Its effects may contribute to plaque stabilization.

  • 19.
    Pohjala, L.
    et al.
    Åbo Akad Univ, Turku, Finland.
    Uvell, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hakala, E.
    Univ Helsinki, Div Pharmaceut Biol, Helsinki, Finland.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Vuorela, P.
    Åbo Akad Univ, Turku, Finland.
    The isoflavone biochanin a inhibits the growth of the intracellular bacteria Chiamydia trachomatis and Chlamydia pneumoniae2012In: Planta Medica, ISSN 0032-0943, E-ISSN 1439-0221, Vol. 78, no 11, p. 1102-1102Article in journal (Other academic)
    Abstract [en]

    Epidemiology and physiological consequences of chlamydial infections show these intracellular bacteria to have maintained their prevalence. Especially C. pneumoniae are able to confer to a treatment refractory chronic state of infection that cannot be eradicated with currently available therapeutic options. Here we report the effects of biochanin A on the growth of intracellular Chlamydia spp. It is the main flavonoid component of red clover (Trifolium pratense) extracts, which besides its estrogenic and antioxidative properties is known to potentiate the antibacterial effects of other chemical agents by inhibiting bacterial efflux pumps. We identified biochanin A as a hit compound in a high-content screen of purified natural products for C. trachomatis growth inhibitors. It was found to inhibit the replication of C. pneumoniae clinical strain K7 (IC =12μM) and to prevent 100% of infectious progeny production at 50μM. Thus, biochanin A is a more potent inhibitor of C. pneumoniae  than the related isoflavone genistein, which we have earlier shown to be only moderately active against this bacterium. Further, this data suggests that biochanin A acts as a direct growth inhibitor rather than an antibacterial potentiator against these pathogens.

  • 20.
    Saleeb, Michael
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mojica, Sergio
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Eriksson, Anna U.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, C. David
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Natural product inspired library synthesis – Identification of 2,3-diarylbenzofuran and 2,3-dihydrobenzofuran based inhibitors of Chlamydia trachomatis2018In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 143, p. 1077-1089Article in journal (Refereed)
    Abstract [en]

    A natural product inspired library was synthesized based on 2,3-diarylbenzofuran and 2,3-diaryl-2,3-dihydrobenzofuran scaffolds. The library of forty-eight compounds was prepared by utilizing Pd-catalyzed one-pot multicomponent reactions and ruthenium-catalyzed intramolecular carbenoid C-H insertions. The compounds were evaluated for antibacterial activity in a panel of test systems including phenotypic, biochemical and image-based screening assays. We identified several potent inhibitors that block intracellular replication of pathogenic Chlamydia trachomatis with IC50 ≤ 3 μM. These new C. trachomatis inhibitors can serve as starting points for the development of specific treatments that reduces the global burden of C. trachomatis infections.

  • 21. Steptoe, A
    et al.
    Gylfe, Åsa
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Shamaei-Tousi, A
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Henderson, B
    Pathogen burden and cortisol profiles over the day2009In: Epidemiology and Infection, ISSN 0950-2688, E-ISSN 1469-4409, Vol. 137, no 12, p. 1816-1824Article in journal (Refereed)
    Abstract [en]

    Hypothalamic-pituitary-adrenocortical (HPA) regulation in adults is influenced by early psychosocial adversity, but the role of infectious disease history is poorly understood. We studied the association between cumulative pathogen burden and cortisol profile over the day in a sample of 317 healthy men and women aged 51-72 years. Cumulative pathogen burden was defined as positive serostatus for Chlamydia pneumoniae, cytomegalovirus (CMV) and herpes simplex virus 1 (HSV-1). Salivary cortisol was sampled repeatedly over the day. The cortisol slope was defined as the decrease across the day and evening. Age, gender, grade of employment, body mass index, smoking status, self-rated health, cardiovascular medication, depressed mood and time of waking were included as covariates. The pathogen burden averaged 1.76 (S.D. = 0.92). The cortisol slope was inversely associated with pathogen burden after controlling for covariates. When individual pathogens were studied, only CMV was associated with flatter cortisol rhythms in isolation. We conclude that pathogen burden is independently associated with flatter cortisol slopes over the day, and may contribute to disturbed neuroendocrine regulation.

  • 22.
    Sunduru, Naresh
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Salin, Olli
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Gylfe, Åsa
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Design, synthesis and evaluation of novel polypharmacological antichlamydial agents2015In: European Journal of Medicinal Chemistry, ISSN 0223-5234, E-ISSN 1768-3254, Vol. 101, p. 595-603Article in journal (Refereed)
    Abstract [en]

    Discovery of new polypharmacological antibacterial agents with multiple modes of actions can be an alternative to combination therapy and also a possibility to slow development of antibiotic resistance. In support to this hypothesis, we synthesized 16 compounds by combining the pharmacophores of Chlamydia trachomatis inhibitors and inhibitors of type III secretion (T3S) in gram-negative bacteria. In this study we have developed salicylidene acylhydrazide sulfonamides (11c & 11d) as new antichlamydial agents that also inhibit T3S in Yersinia pseudotuberculosis.

  • 23.
    Ur-Rehman, Tofeeq
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Blomgren, Anders
    Discovery Drug Metabolism, Pharmacokinetics, and Bioanalysis, AstraZeneca R&D Lund, Sweden.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretionManuscript (preprint) (Other academic)
  • 24.
    Ur-Rehman, Tofeeq
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan .
    Nordfelth, Roland
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Blomgren, Anders
    Discovery Drug Metabolism, Pharmacokinetics, and Bioanalysis, AstraZeneca R&D Lund, Sweden.
    Zetterström, Caroline E
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Preliminary pharmacokinetics of the bacterial virulence inhibitor N'-(3,5-dibromo-2-hydroxy-benzylidenene)-nicotinic acid hydrazide2012In: Advances in Yersinia Research, Springer, 2012, p. 349-356Chapter in book (Other academic)
    Abstract [en]

    Bacterial virulence inhibitors are potential novel drugs that may be used to treat infections. N′-(3,5-dibromo-2-hydroxy-benzylidene)-nicotinic acid hydrazide, ME0052, has been shown to inhibit type III secretion (T3S) and virulence in several Gram-negative enteric pathogens including Yersinia pseudotuberculosis. In vitro data suggest that ME0052 may be developed into drugs against bacterial gastroenteritis. Here we describe preliminary pharmacokinetics of ME0052 after intraperitoneal and subcutaneous administration in mice. The aim of this work was to identify suitable formulations and to determine pharmacokinetic parameters prior to testing in animal infection models. Peak plasma concentrations above the IC50 for virulence inhibition were achieved with high dose formulations and the elimination half-life was prolonged from 0.5 to 3.4 h using a poloxamer 407-based slow-release formulation.

  • 25.
    Ur-Rehman, Tofeeq
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Slepenkin, Anatoly
    Chu, Hencelyn
    Blomgren, Anders
    Dahlgren, Markus K
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Zetterström, Caroline E
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Peterson, Ellena M
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gylfe, Åsa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Pre-clinical pharmacokinetics and anti-chlamydial activity of salicylidene acylhydrazide inhibitors of bacterial type III secretion2012In: The Journal of antibiotics, ISSN 0021-8820, Vol. 65, p. 397-404Article in journal (Refereed)
    Abstract [en]

    Salicylidene acylhydrazides belong to a class of compounds shown to inhibit bacterial type III secretion (T3S) in pathogenic Gram-negative bacteria. This class of compounds also inhibits growth and replication of Chlamydiae, strict intracellular bacteria that possess a T3S system. In this study a library of 58 salicylidene acylhydrazides was screened to identify inhibitors of Chlamydia growth. Compounds inhibiting growth of both Chlamydia trachomatis and Chlamydophila pneumoniae were tested for cell toxicity and seven compounds were selected for preliminary pharmacokinetic analysis in mice using cassette dosing. Two compounds, ME0177 and ME0192, were further investigated by individual pharmacokinetic analysis. Compound ME0177 had a relatively high peak plasma concentration (C(max)) and area under curve and therefore may be considered for systemic treatment of Chlamydia infections. The other compound, ME0192, had poor pharmacokinetic properties but the highest anti-chlamydial activity in vitro and therefore was tested for topical treatment in a mouse vaginal infection model. ME0192 administered vaginally significantly reduced the infectious burden of C. trachomatis and the number of infected mice.Journal of Antibiotics advance online publication, 6 June 2012; doi:10.1038/ja.2012.43.

1 - 25 of 25
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf