umu.sePublications
Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Cavka, Adnan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Guo, Xiang
    Tang, Shui-Jia
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jönsson, Leif J
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hong, Feng
    Production of bacterial cellulose and enzyme from waste fiber sludge2013In: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 6, no 25Article in journal (Refereed)
    Abstract [en]

    Background: Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries. A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and X-ray diffraction analysis, and its mechanical properties were investigated.

    Results: Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite (SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L (DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level obtained in a reference medium containing equal amounts of reducing sugar.

    Conclusions: It was shown that waste fiber sludge is a suitable raw material for production of bacterial cellulose and enzymes through sequential fermentation. The concept studied offers efficient utilization of the various components in fiber sludge hydrolysates and affords a possibility to combine production of two high value-added products using residual streams from pulp mills and biorefineries. Cellulase produced in this manner could tentatively be used to hydrolyze fresh fiber sludge to obtain medium suitable for production of BC in the same biorefinery.

  • 2.
    Gräsvik, John
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Normark, Monica
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jönsson, Leif
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mikkola, Jyri-Pekka
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass.2014In: BMC Biotechnology, ISSN 1472-6750, E-ISSN 1472-6750, Vol. 14, no 1, p. 34-45Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose.

    RESULTS: Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation.

    CONCLUSIONS: The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance.

  • 3. Johansson, Kristin
    et al.
    Gillgren, Thomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jarnstrom, Lars
    Jönsson, Leif
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Comparison of lignin derivatives as substrates for laccase-catalyzed scavenging of oxygen in coatings and films2014In: Journal of Biological Engineering, ISSN 1754-1611, E-ISSN 1754-1611, Vol. 8, no 1Article in journal (Refereed)
    Abstract [en]

    Background:

    Lignin derivatives are phenylpropanoid biopolymers derived from pulping and biorefinery processes. The possibility to utilize lignin derivatives from different types of processes in advanced enzyme-catalyzed oxygen-scavenging systems intended for active packaging was explored. Laccase-catalyzed oxidation of alkali lignin (LA), hydrolytic lignin (LH), organosolv lignin (LO), and lignosulfonates (LS) was compared using oxygen-scavenging coatings and films in liquid and gas phase systems.

    Results:

    When coatings containing lignin derivatives and laccase were immersed in a buffered aqueous solution, the oxygen-scavenging capability increased in the order LO < LH < LA < LS. Experiments with coatings containing laccase and LO, LH or LA incubated in oxygen-containing gas in air-tight chambers and at a relative humidity (RH) of 100% showed that paperboard coated with LO and laccase reduced the oxygen content from 1.0% to 0.4% during a four-day period, which was far better than the results obtained with LA or LH. LO-containing coatings incubated at 92% RH also displayed activity, with a decrease in oxygen from 1.0% to 0.7% during a four-day period. The oxygen scavenging was not related to the content of free phenolic hydroxyl groups, which increased in the order LO < LS < LH < LA. LO and LS were selected for further studies and films containing starch, clay, glycerol, laccase and LO or LS were characterized using gel permeation chromatograpy, dynamic mechanical analysis, and wet stability.

    Conclusions:

    The investigation shows that different lignin derivatives exhibit widely different properties as a part of active coatings and films. Results indicate that LS and LO were most suitable for the application studied and differences between them were attributed to a higher degree of laccase-catalyzed cross-linking of LS than of LO. Inclusion in active-packaging systems offers a new way to utilize some types of lignin derivatives from biorefining processes.

  • 4. Johansson, Kristin
    et al.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Caisa
    Järnström, Lars
    Jönsson, Leif J
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Oxygen-scavenging coatings and films based on lignosulfonates and laccase2012In: Journal of Biotechnology, ISSN 0168-1656, E-ISSN 1873-4863, Vol. 161, no 1, p. 14-18Article in journal (Refereed)
    Abstract [en]

    Laccase and lignosulfonates were included in coating colors and embedded in latex-based or starch-based films and coatings on foil or board. After 6 days at 23°C and 100% relative humidity, the oxygen content in airtight chambers decreased from 1.0% (synthetic gas consisting of 99% N(2) and 1% O(2)) to 0.3% in the presence of board coated with lignosulfonate and laccase, while the oxygen content remained unchanged in control experiments without enzyme. The water stability of lignosulfonate-containing latex-based coatings and starch-based films was improved after laccase-catalyzed oxidation of lignosulfonates, which indicates polymerization to products with lower solubility in water. Furthermore, the E' modulus of starch-based films increased with 30%, which indicates laccase-catalyzed polymerization of lignosulfonates resulting in increased stiffness of the film. The results suggest that laccases and lignosulfonates can be used as an oxygen-scavenging system in active packaging and that enzyme-catalyzed polymerization of lignosulfonates contributes to improved water stability and mechanical properties.

  • 5.
    Normark, Monica
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Gräsvik, John
    Hedenström, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gorzsas, Andras
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jönsson, Leif J.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Biochemical Conversion of Torrefied Norway Spruce After Pretreatment with Acid or Ionic Liquid2016In: Bioenergy Research, ISSN 1939-1234, E-ISSN 1939-1242, Vol. 9, no 1, p. 355-368Article in journal (Refereed)
    Abstract [en]

    The chemical effects of torrefaction and the possibility to combine torrefaction with biochemical conversion were explored in experiments with five preparations of wood of Norway spruce that had been torrefied using different degrees of severity. Compositional analysis and analyses using solid-state CP/MAS C-13 NMR, Fourier-transform infrared (FTIR) spectroscopy, and Py-GC/MS showed small gradual changes, such as decreased hemicellulosic content and increased Klason lignin value, for torrefaction conditions in the range from 260 A degrees C and 8 min up to 310 A degrees C and 8 min. The most severe torrefaction conditions (310 A degrees C, 25 min) resulted in substantial loss of glucan and further increase of the Klason lignin value, which was attributed to conversion of carbohydrate to pseudo-lignin. Even mild torrefaction conditions led to decreased susceptibility to enzymatic hydrolysis of cellulose, a state which was not changed by pretreatment with sulfuric acid. Pretreatment with the ionic liquid (IL) 1-butyl-3-methylimidazolium acetate overcame the additional recalcitrance caused by torrefaction, and the glucose yields after 72 h of enzymatic hydrolysis of wood torrefied at 260 A degrees C for 8 min and at 285 A degrees C for 16.5 min were as high as that of IL-pretreated non-torrefied spruce wood. Compared to IL-pretreated non-torrefied reference wood, the glucose production rates after 2 h of enzymatic hydrolysis of IL-pretreated wood torrefied at 260 A degrees C for 8 min and at 285 A degrees C for 16.5 min were 63 and 40 % higher, respectively. The findings offer increased understanding of the effects of torrefaction and indicate that mild torrefaction is compatible with biochemical conversion after pretreatment with alternative solvents that disrupt pseudo-lignin-containing lignocellulose.

  • 6.
    Normark, Monica
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lestander, Torbjörn A.
    Department of Forest Biomaterials and Technology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Jönsson, Leif J.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Analysis, pretreatment and enzymatic saccharification of different fractions of Scots pine2014In: BMC Biotechnology, ISSN 1472-6750, E-ISSN 1472-6750, Vol. 14, article id 20Article in journal (Refereed)
    Abstract [en]

    Background: Forestry residues consisting of softwood are a major lignocellulosic resource for production of liquid biofuels. Scots pine, a commercially important forest tree, was fractionated into seven fractions of chips: juvenile heartwood, mature heartwood, juvenile sapwood, mature sapwood, bark, top parts, and knotwood. The different fractions were characterized analytically with regard to chemical composition and susceptibility to dilute-acid pretreatment and enzymatic saccharification. Results: All fractions were characterized by a high glucan content (38-43%) and a high content of other carbohydrates (11-14% mannan, 2-4% galactan) that generate easily convertible hexose sugars, and by a low content of inorganic material (0.2-0.9% ash). The lignin content was relatively uniform (27-32%) and the syringyl-guaiacyl ratio of the different fractions were within the range 0.021-0.025. The knotwood had a high content of extractives (9%) compared to the other fractions. The effects of pretreatment and enzymatic saccharification were relatively similar, but without pretreatment the bark fraction was considerably more susceptible to enzymatic saccharification. Conclusions: Since sawn timber is a main product from softwood species such as Scots pine, it is an important issue whether different parts of the tree are equally suitable for bioconversion processes. The investigation shows that bioconversion of Scots pine is facilitated by that most of the different fractions exhibit relatively similar properties with regard to chemical composition and susceptibility to techniques used for bioconversion of woody biomass.

  • 7. Ratke, Christine
    et al.
    Terebieniec, Barbara K.
    Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Derba-Maceluch, Marta
    Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden.
    Grahn, Thomas
    Schiffthaler, Bastian
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Ulvcrona, Thomas
    Ozparpucu, Merve
    Rüggeberg, Markus
    Lundqvist, Sven-Olof
    Street, Nathaniel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Jönsson, Leif J.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Mellerowicz, Ewa J.
    Downregulating aspen xylan biosynthetic GT43 genes in developing wood stimulates growth via reprograming of the transcriptome2018In: New Phytologist, ISSN 0028-646X, Vol. 219, no 1, p. 230-245Article in journal (Refereed)
    Abstract [en]

    Xylan is one of the main compounds determining wood properties in hardwood species. The xylan backbone is thought to be synthesized by a synthase complex comprising two members of the GT43 family. We downregulated all GT43 genes in hybrid aspen (Populus tremulaxtremuloides) to understand their involvement in xylan biosynthesis.

    All three clades of the GT43 family were targeted for downregulation using RNA interference individually or in different combinations, either constitutively or specifically in developing wood.

    Simultaneous downregulation in developing wood of the B (IRX9) and C (IRX14) clades resulted in reduced xylan Xyl content relative to reducing end sequence, supporting their role in xylan backbone biosynthesis. This was accompanied by a higher lignocellulose saccharification efficiency. Unexpectedly, GT43 suppression in developing wood led to an overall growth stimulation, xylem cell wall thinning and a shift in cellulose orientation. Transcriptome profiling of these transgenic lines indicated that cell cycling was stimulated and secondary wall biosynthesis was repressed. We suggest that the reduced xylan elongation is sensed by the cell wall integrity surveying mechanism in developing wood.

    Our results show that wood-specific suppression of xylan-biosynthetic GT43 genes activates signaling responses, leading to increased growth and improved lignocellulose saccharification.

  • 8.
    Wang, Zhao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gräsvik, John
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jönsson, Leif J.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Comparison of [HSO4](-), [Cl](-) and [MeCO2](-) as anions in pretreatment of aspen and spruce with imidazolium-based ionic liquids2017In: BMC Biotechnology, ISSN 1472-6750, E-ISSN 1472-6750, Vol. 17, article id 82Article in journal (Refereed)
    Abstract [en]

    Background: Ionic liquids (ILs) draw attention as green solvents for pretreatment of lignocellulose before enzymatic saccharification. Imidazolium-based ILs with different anionic constituents ([HSO4], [Cl], [MeCO2]) were compared with regard to pretreatment of wood from aspen and spruce. The objective was to elucidate how the choice of anionic constituent affected the suitability of using the IL for pretreatment of hardwood, such as aspen, and softwood, such as spruce. The investigation covered a thorough analysis of the mass balance of the IL pretreatments, the effects of pretreatment on the cell wall structure as assessed by fluorescence microscopy, and the effects of pretreatment on the susceptibility to enzymatic saccharification. Torrefied aspen and spruce were included in the comparison for assessing how shifting contents of hemicelluloses and Klason lignin affected the susceptibility of the wood to IL pretreatment and enzymatic saccharification.

    Results: The glucose yield after IL pretreatment increased in the order [Cl] < [HSO4] < [MeCO2] for aspen, but in the order [HSO4] < [Cl] < [MeCO2] for spruce. For both aspen and spruce, removal of hemicelluloses and lignin increased in the order [Cl] < [MeCO2] < [HSO4]. Fluorescence microscopy indicated increasingly disordered cell wall structure following the order [HSO4] < [Cl] < [MeCO2]. Torrefaction of aspen converted xylan to pseudo-lignin and changed the glucose yield order to [HSO4] < [Cl] < [MeCO2].

    Conclusions: The acidity of [HSO4] caused extensive hydrolysis of xylan, which facilitated pretreatment of xylan-rich hardwood. Apart from that, the degree of removal of hemicelluloses and lignin did not correspond well with the improvement of the enzymatic saccharification. Taken together, the saccharification results were found to mainly reflect (i) the different capacities of the ILs to disorder the cell wall structure, (ii) the recalcitrance caused by high xylan content, and (iii) the capacity of the [HSO4]-based IL to hydrolyze xylan.

  • 9.
    Wang, Zhao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gillgren, Thomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jönsson, Leif J.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chemical and structural factors influencing enzymatic saccharification of wood from aspen, birch and spruce2018In: Biomass and Bioenergy, ISSN 0961-9534, E-ISSN 1873-2909, Vol. 109, p. 125-134Article in journal (Refereed)
    Abstract [en]

    The susceptibility of untreated and sulfuric-acid-pretreated aspen, birch, and spruce to analytical enzymatic saccharification was studied in relation to their chemical composition and physical-structural features. The analytical data collected covered the mass fractions of lignin, carbohydrates, and extractives, the release of acetic acid, formic acid, and uronic acids by acid and alkaline hydrolysis, crystallinity and crystallite size, syringyl: guaiacyl (S:G) ratio of lignin, cellulose accessibility, FTIR spectra, images from SEM and fluorescence microscopy, and susceptibility to enzymatic saccharification using enzyme mixtures with and without supplementary xylanase.In the absence of pretreatment the mass fraction yield of Glc on the original dry wood in the analytical enzymatic saccharification increased in the order birch (16 g kg−1) < spruce (35 g kg−1) < aspen (150 g kg−1). After acid pretreatment, the order changed to spruce (170 g kg−1) < aspen (290 g kg−1), birch (290 g kg−1). The relatively high recalcitrance of untreated birch was not possible to relate to mass fraction of lignin, S:G ratio, cellulose crystallinity, or mass fraction of acetyl, but rather to structural features, such as a more compact surface structure with high density and low cellulose accessibility. The relatively high sugar yields from both untreated and pretreated aspen suggest that aspen wood is well suited as feedstock for production of liquid biofuels and green chemicals in forest-based biorefineries.

  • 10.
    Winestrand, Sandra
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gandla, Madhavi Latha
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hong, Feng
    Chen, Qi Zhi
    Jönsson, Leif J
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Oxalate decarboxylase of Trametes versicolor: biochemical characterization and performance in bleaching filtrates from the pulp and paper industry2012In: Journal of chemical technology and biotechnology (1986), ISSN 0268-2575, E-ISSN 1097-4660, Vol. 87, no 11, p. 1600-1606Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Oxalate decarboxylase (ODC) from acid-induced cultures of the white-rot fungus Trametes versicolor was purified and characterized with respect to its biochemical properties and the possibility to utilize the enzyme for treatment of process water with the intention to prevent problems with calcium-oxalate scaling in the pulp and paper industry. RESULTS: Purified T. versicolor ODC was identified by tandem mass spectrometry. As estimated by using SDS-PAGE, the molecular mass was 69 kDa, and 60 kDa after deglycosylation with N-glycosidase F. The pH optimum was 2.5 and the temperature optimum was 4045 degrees C. The effects of ten potential inhibitors in industrial filtrates were examined. The enzyme was sensitive to low concentrations (0.1 mmol L-1) of chlorite and sulfite. T. versicolor ODC exhibited activity in 16 filtrates collected from mechanical pulping and kraft pulping. It had higher activity than ODC from Aspergillus niger in all of the filtrates and higher activity than oxalate oxidase from barley in all filtrates except two. CONCLUSIONS: The investigation shows basic biochemical properties of T. versicolor ODC and indicates that the enzyme may be useful for treatment of industrial filtrates under acidic conditions. Copyright (c) 2012 Society of Chemical Industry

  • 11.
    Winestrand, Sandra
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Johansson, Kristin
    Department of Chemical Engineering, Karlstad University.
    Järnström, Lars
    Department of Chemical Engineering, Karlstad University.
    Jönsson, Leif J
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Co-immobilization of oxalate oxidase and catalase in films for scavenging of oxygen or oxalic acid2013In: Biochemical engineering journal, ISSN 1369-703X, E-ISSN 1873-295X, Vol. 72, p. 96-101Article in journal (Refereed)
    Abstract [en]

    Oxalate oxidase has potential to act as an oxygen scavenger in active packaging to increase the shelf-life of food and beverages, while simultaneously producing the protective packaging gas carbon dioxide. This study shows that oxalate oxidase from barley can be immobilized with retained catalytic activity through entrapment in a latex polymer matrix. Conditions for formation of film containing oxalate oxidase have been evaluated as well as effects of storage and latex on enzyme activity, migration of enzyme in films, and the ability of the latex films to resist higher temperatures. Drying of enzyme-containing latex films at 75 °C prior to conditioning at 30 °C resulted in higher activity than drying solely at 30 °C, or drying at 95 °C or 105 °C followed by conditioning at 30 °C. Storage of films in air at 4 °C for 14 days did not negatively affect the enzymatic activity. Inclusion of catalase in films with oxalate oxidase effectively prevented release of hydrogen peroxide. The results suggest that the immobilized enzyme can successfully be used both as an oxygen scavenger and as an oxalic-acid scavenger.

  • 12. Zhang, Shuo
    et al.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Chen, Lin
    Li, Dengxin
    Jönsson, Leif
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Hong, Feng
    Tolerance of the Nanocellulose-Producing Bacterium Gluconacetobacter xylinus to Lignocellulose-Derived Acids and Aldehydes2014In: Journal of Agricultural and Food Chemistry, ISSN 0021-8561, E-ISSN 1520-5118, Vol. 62, no 40, p. 9792-9799Article in journal (Refereed)
    Abstract [en]

    Lignocellulosic biomass serves as a potential alternative feedstock for production of bacterial nanocellulose (BNC), a high-value added product of bacteria such as Gluconacetobacter xylinus. The tolerance of G. xylinus to lignocellulose derived inhibitors (formic acid, acetic acid, levulinic acid, furfural, and S-hydroxymethylfurfural) was investigated. Whereas 100 mM formic acid completely suppressed the metabolism of G xylinus, 250 mM of either acetic acid or levulinic acid still allowed glucose metabolism and BNC production to occur. Complete suppression of glucose utilization and BNC production was observed after inclusion of 20 and 30 mM furfural and 5-hydroxymethylfurfural, respectively. The highest yields observed were 88% for furoic acid/furfural and 76% for 5-hydroxymethyl-2-furoic acid/5-hydroxymethylfurfural. These results are the first demonstration of the capability of G. xylinus to tolerate lignocellulose derived inhibitors and to convert furan aldehydes.

  • 13. Zhang, Shuo
    et al.
    Winestrand, Sandra
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Guo, Xiang
    Chen, Lin
    Hong, Feng
    Jönsson, Leif
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Effects of aromatic compounds on the production of bacterial nanocellulose by Gluconacetobacter xylinus2014In: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 13, p. 62-Article in journal (Refereed)
    Abstract [en]

    Background:

    Bacterial cellulose (BC) is a polymeric nanostructured fibrillar network produced by certain microorganisms, principally Gluconacetobacter xylinus. BC has a great potential of application in many fields. Lignocellulosic biomass has been investigated as a cost-effective feedstock for BC production through pretreatment and hydrolysis. It is well known that detoxification of lignocellulosic hydrolysates may be required to achieve efficient production of BC. Recent results suggest that phenolic compounds contribute to the inhibition of G. xylinus. However, very little is known about the effect on G. xylinus of specific lignocellulose-derived inhibitors. In this study, the inhibitory effects of four phenolic model compounds (coniferyl aldehyde, ferulic acid, vanillin and 4-hydroxybenzoic acid) on the growth of G. xylinus, the pH of the culture medium, and the production of BC were investigated in detail. The stability of the phenolics in the bacterial cultures was investigated and the main bioconversion products were identified and quantified.

    Results:

    Coniferyl aldehyde was the most potent inhibitor, followed by vanillin, ferulic acid, and 4-hydroxybenzoic acid. There was no BC produced even with coniferyl aldehyde concentrations as low as 2 mM. Vanillin displayed a negative effect on the bacteria and when the vanillin concentration was raised to 2.5 mM the volumetric yield of BC decreased to similar to 40% of that obtained in control medium without inhibitors. The phenolic acids, ferulic acid and 4-hydroxybenzoic acid, showed almost no toxic effects when less than 2.5 mM. The bacterial cultures oxidized coniferyl aldehyde to ferulic acid with a yield of up to 81%. Vanillin was reduced to vanillyl alcohol with a yield of up to 80%.

    Conclusions:

    This is the first investigation of the effect of specific phenolics on the production of BC by G. xylinus, and is also the first demonstration of the ability of G. xylinus to convert phenolic compounds. This study gives a better understanding of how phenolic compounds and G. xylinus cultures are affected by each other. Investigations in this area are useful for elucidating the mechanism behind inhibition of G. xylinus in lignocellulosic hydrolysates and for understanding how production of BC using lignocellulosic feedstocks can be performed in an efficient way.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf