Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Alakpa, Enateri V.
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bahrd, Anton
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wiklund, Krister
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Ljungberg, Christina
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bioprinted schwann and mesenchymal stem cell co-cultures for enhanced spatial control of neurite outgrowth2023In: Gels, E-ISSN 2310-2861, Vol. 9, no 3, article id 172Article in journal (Refereed)
    Abstract [en]

    Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel’s highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.

    Download full text (pdf)
    fulltext
  • 2.
    Anerillas, Luis Oliveros
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lammi, Mikko
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Three-dimensional osteogenic differentiation of bone marrow mesenchymal stem cells promotes matrix metallopeptidase 13 (Mmp13) expression in type i collagen hydrogels2021In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 22, no 24, article id 13594Article in journal (Refereed)
    Abstract [en]

    Autologous bone transplantation is the principal method for reconstruction of large bone defects. This technique has limitations, such as donor site availability, amount of bone needed and morbidity. An alternative to this technique is tissue engineering with bone marrow-derived mesenchymal stem cells (BMSCs). In this study, our aim was to elucidate the benefits of culturing BMSCs in 3D compared with the traditional 2D culture. In an initial screening, we combined BMSCs with four different biogels: unmodified type I collagen (Col I), type I collagen methacrylate (ColMa), an alginate and cellulose-based bioink (CELLINK) and a gelatin-based bioink containing xanthan gum (GelXA-bone). Col I was the best for structural integrity and maintenance of cell morphology. Osteogenic, adipogenic, and chondrogenic differentiations of the BMSCs in 2D versus 3D type I collagen gels were investigated. While the traditional pellet culture for chondrogenesis was superior to our tested 3D culture, Col I hydrogels (i.e., 3D) favored adipogenic and osteogenic differentiation. Further focus of this study on osteogenesis were conducted by comparing 2D and 3D differentiated BMSCs with Osteoimage® (stains hydroxyapatite), von Kossa (stains anionic portion of phosphates, carbonates, and other salts) and Alizarin Red (stains Ca2+ deposits). Multivariate gene analysis with various covariates showed low variability among donors, successful osteogenic differentiation, and the identification of one gene (matrix metallopeptidase 13, MMP13) significantly differentially expressed in 2D vs. 3D cultures. MMP13 protein expression was confirmed with immunohistochemistry. In conclusion, this study shows evidence for the suitability of type I collagen gels for 3D osteogenic differentiation of BMSCs, which might improve the production of tissue-engineered constructs for treatment of bone defects.

    Download full text (pdf)
    fulltext
  • 3.
    Anerillas, Luis Oliveros
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Platelet lysate for expansion or osteogenic differentiation of bone marrow mesenchymal stem cells for 3D tissue constructs2023In: Regenerative Therapy, E-ISSN 2352-3204, Vol. 24, p. 298-310Article in journal (Refereed)
    Abstract [en]

    Background: The use of mesenchymal stem cells (MSCs) for the development of tissue-engineered constructs has advanced in recent years. However, future clinically approved products require following good manufacturing practice (GMP) guidelines. This includes using alternatives to xenogeneic-derived cell culture supplements to avoid rejection of the transplants. Consequently, human platelet lysate (PLT) has been adopted as an affordable and effective alternative to foetal bovine serum (FBS) in traditional 2D cultures. However, little is known about its effect in more advanced 3D culture systems.

    Methods: We evaluated bone marrow MSCs (BMSCs) proliferation and CD marker expression in cells expanded in FBS or PLT-supplemented media. Differentiation capacity of the BMSCs expanded in the presence of the different supplements was evaluated in 3D type I collagen hydrogels. Furthermore, the effects of the supplements on the process of differentiation were analyzed by using qPCR and histological staining.

    Results: Cell proliferation was greater in PLT-supplemented media versus FBS. BMSCs expanded in PLT showed similar osteogenic differentiation capacity in 3D compared with FBS expanded cells. In contrast, when cells were 3D differentiated in PLT they showed lower osteogenesis versus the traditional FBS protocol. This was also the case for adipogenic differentiation, in which FBS supplementation was superior to PLT.

    Conclusions: PLT is a superior alternative to FBS for the expansion of MSCs without compromising their subsequent differentiation capacity in 3D. However, differentiation in PLT is impaired. Thus, PLT can be used to reduce the time required to expand the necessary cell numbers for development of 3D tissue engineered MSC constructs.

    Download full text (pdf)
    fulltext
  • 4.
    Brohlin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Biomedical Laboratory Science.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells2017In: Cytotherapy, ISSN 1465-3249, E-ISSN 1477-2566, Vol. 19, no 5, p. 629-639Article in journal (Refereed)
    Abstract [en]

    Background. The growth properties and neurotrophic and angiogenic effects of human mesenchymal stromal cells (MSCs) cultured in a defined xeno-free, serum-free medium (MesenCult-XF) were investigated. Methods. Human MSCs from adipose tissue (ASCs) and bone marrow (BMSCs) were cultured in Minimum Essential Medium-alpha (alpha-MEM) containing fetal calf serum or in MesenCult-XF. Proliferation was measured over 10 passages and the colony-forming unit (CFU) assay and expression of cluster of differentiation (CD) surface markers were determined. Neurite outgrowth and angiogenic activity of the MSCs were determined. Results. At early passage, both ASCs and BMSCs showed better proliferation in MesenCult-XF compared with standard a-MEM containing serum. However, CFUs were significantly lower in MesenCult-XF. ASCs cultured in MesenCult-XF continued to expand at faster rates than cells grown in serum. BMSCs showed morphological changes at late passage in MesenCult-XF and stained positive for senescence beta-galactosidase activity. Expression levels of CD73 and CD90 were similar in both cell types under the various culture conditions but CD105 was significantly reduced at passage 10 in MesenCult-XF. In vitro stimulation of the cells enhanced the expression of brain derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and angiopoietin-1. Stimulated ASCs grown in MesenCult-XF evoked the longest neurite outgrowth in a neuron co-culture model. Stimulated BMSCs grown in MesenCult-XF produced the most extensive network of capillary-like tube structures in an in vitro angiogenesis assay. Conclusions. ASCs and BMSCs exhibit high levels of neurotrophic and angiogenic activity when grown in the defined serum free medium indicating their suitability for treatment of various neurological conditions. However, long-term expansion in MesenCult-XF might be restricted to ASCs.

  • 5.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Mechanical stress potentiates the differentiation of periodontal ligament stem cells into keratocytes2018In: British Journal of Ophthalmology, ISSN 0007-1161, E-ISSN 1468-2079, Vol. 102, no 4, p. 562-569Article in journal (Refereed)
    Abstract [en]

    Aims To explore the role of corneal-shaped static mechanical strain on the differentiation of human periodontal ligament stem cells (PDLSCs) into keratocytes and the possible synergistic effects of mechanics and inducing medium. Methods PDLSCs were exposed to 3% static dome-shaped mechanical strain in a Flexcell Tension System for 3 days and 7 days. Keratocyte phenotype was determined by gene expression of keratocyte markers. Keratocyte differentiation (inducing) medium was introduced in the Flexcell system, either continuously or intermittently combined with mechanical stimulation. The synergistic effects of mechanics and inducing medium on keratocyte differentiation was evaluated by gene and protein expression of keratocyte markers. Finally, a multilamellar cell sheet was assembled by seeding PDLSCs on a collagen membrane and inducing keratocyte differentiation. The transparency of the cell sheet was assessed, and typical markers of native human corneal stroma were evaluated by immunofluorescence staining. Results Dome-shaped mechanical stimulation promoted PDLSCs to differentiate into keratocytes, as shown by the upregulation of ALDH3A1, CD34, LUM, COL I and COL V. The expression of integrins were also upregulated after mechanical stimulation, including integrin alpha 1, alpha 2, beta 1 and non-muscle myosin II B. A synergistic effect of mechanics and inducing medium was found on keratocyte differentiation. The cell sheets were assembled under the treatment of mechanics and inducing medium simultaneously. The cell sheets were transparent, multilamellar and expressed typical markers of corneal stroma. Conclusion Dome-shaped mechanical stimulation promotes differentiation of PDLSCs into keratocytes and has synergistic effects with inducing medium. Multilamellar cell sheets that resemble native human corneal stroma show potential for future clinical applications.

    Download full text (pdf)
    fulltext
  • 6.
    Chen, Jialin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Zhang, Wei
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Physiotherapy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model2017In: Stem Cell Research & Therapy, E-ISSN 1757-6512, Vol. 8, article id 260Article in journal (Refereed)
    Abstract [en]

    Background: We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane.

    Methods: Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins.

    Results: SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma.

    Conclusions: Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering.

    Download full text (pdf)
    fulltext
  • 7. Dinarello, Charles
    et al.
    Arend, William
    Sims, John
    Smith, Dirk
    Blumberg, Hal
    O'Neill, Luke
    Goldbach-Mansky, Raphaela
    Pizarro, Theresa
    Hoffman, H.
    Bufler, Philip
    Nold, Marcel
    Ghezzi, Pietro
    Mantovani, Alberto
    Garlanda, Cecilia
    Boraschi, Diana
    Rubartelli, Anna
    Netea, Mihai
    van der Meer, Jos
    Joosten, Leo
    Mandrup-Poulsen, Tom
    Donath, Marc
    Lewis, Eli
    Pfeilschifter, Josef
    Martin, Michael
    Kracht, Michael
    Muehl, H
    Novick, Daniela
    Lukic, Miodrag
    Conti, Bruno
    Solinger, Alan
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Odontology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    van de Veerdonk, Frank
    Gabel, Chiristopher
    IL-1 family nomenclature2010In: Nature Immunology, ISSN 1529-2908, E-ISSN 1529-2916, Vol. 11, no 11, p. 973-973Article in journal (Refereed)
  • 8.
    Höglund Åberg, Carola
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis2015In: Virulence, ISSN 2150-5608, Vol. 6, no 3, p. 188-195Article, review/survey (Refereed)
    Abstract [en]

    Periodontitis is an infection-induced inflammatory disease that causes loss of the tooth supporting tissues. Much focus has been put on comparison of the microbial biofilm in the healthy periodontium with the diseased one. The information arising from such studies is limited due to difficulties to compare the microbial composition in these two completely different ecological niches. A few longitudinal studies have contributed with information that makes it possible to predict which individuals who might have an increased risk of developing aggressive forms of periodontitis, and the predictors are either microbial or/and host-derived factors. The most conspicuous condition that is associated with disease risk is the presence of Aggregatibacter actinomycetemcomitans at the individual level. This Gram-negative bacterium has a great genetic variation with a number of virulence factors. In this review we focus in particular on the leukotoxin that, based on resent knowledge, might be one of the most important virulence factors of A. actinomycetemcomitans.

  • 9.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of acetyl-­L-­carnitine treatment on neuroinflammation: An in vitro studyManuscript (preprint) (Other academic)
  • 10.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Abd, H
    Claesson, Rolf
    Umeå University, Faculty of Medicine, Department of Odontology.
    Sandström, G
    Sjöstedt, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Cellular and molecular response of human macrophages exposed to Aggregatibacter actinomycetemcomitans leukotoxin.2011In: Cell death & disease, ISSN 2041-4889, Vol. 2, p. e126-Article in journal (Refereed)
    Abstract [en]

    Aggregatibacter (Actinobacillus) actinomycetemcomitans is a facultative anaerobic gram-negative bacterium associated with severe forms of periodontitis. A leukotoxin, which belongs to the repeats-in-toxin family, is believed to be one of its virulence factors and to have an important role in the bacterium's pathogenicity. This toxin selectively kills human leukocytes by inducing apoptosis and lysis. Here, we report that leukotoxin-induced cell death of macrophages proceeded through a process that differs from the classical characteristics of apoptosis and necrosis. A. actinomycetemcomitans leukotoxin-induced several cellular and molecular mechanisms in human macrophages that led to a specific and excessive pro-inflammatory response with particular secretion of both interleukin (IL)-1β and IL-18. In addition, this pro-inflammatory cell death was inhibited by oxidized ATP, which indicates involvement of the purinergic receptor P2X(7) in this process. This novel virulence mechanism of the leukotoxin may have an important role in the pathogenic potential of this bacterium and can be a target for future therapeutic agents.

  • 11.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology. Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Abd, Hadi
    Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden.
    Claesson, Rolf
    Umeå University, Faculty of Medicine, Department of Odontology, Oral Microbiology.
    Sandström, Gunnar
    Centre for Microbiological Preparedness, Swedish Institute for Infectious Disease Control, Solna, Sweden ; Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institute, Stockholm, Sweden.
    Sjöstedt, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Inflammatory cell death of human macrophages in response to Aggregatibacter actinomycetemcomitans leukotoxinManuscript (Other academic)
    Abstract [en]

    Aggregatibacter (Actinobacillus) actinomycetemcomitans is a facultative anaerobic gram-negative bacterium associated with severe forms of periodontitis. A leukotoxin, which belongs to the Repeats in Toxin (RTX) family, is believed to be one of its virulence factors and to play an important role in the bacterium's pathogenicity. This toxin selectively kills human leukocytes by inducing apoptosis and lysis. Here we report that leukotoxin-induced cell death of macrophages proceeded through a process that differs from the classical characteristics of apoptosis and necrosis. Interestingly, this process resembled pyroptosis, and resulted in an extensive leukotoxin-induced interleukin-1β (IL-1β) secretion. This activation was mainly mediated by caspase-1 activation, while the levels of mRNA for IL-1β were not affected by the leukotoxin. A similar pattern was seen for IL-18, but the level of that cytokine was about 30 times lower. Both of these cytokines are synthesized as biologically inactive precursors and need active caspase-1 for their activation and secretion. In conclusion, A. actinomycetemcomitans leukotoxin induces a pyroptosis-like cell death in human macrophages and that leads to a specific and excessive pro-inflammatory response. This novel virulence mechanism of the leukotoxin may play an important role in the pathogenic potential of this bacterium.

  • 12.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology. Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Claesson, Rolf
    Umeå University, Faculty of Medicine, Department of Odontology.
    Chen, Casey
    Sjöstedt, Anders
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Clinical Bacteriology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology. Parod.
    IL-1beta secretion induced by Aggregatibacter (Actinobacillus) actinomycetemcomitans is mainly caused by the leukotoxin2008In: International Journal of Medical Microbiology, ISSN 1438-4221, E-ISSN 1618-0607, Vol. 298, no 5/6, p. 529-541Article in journal (Refereed)
    Abstract [en]

    Aggregatibacter (Actinobacillus) actinomycetemcomitans forms a leukotoxin that selectively lyses primate neutrophils, monocytes and triggers apoptosis in promyeloic cells and degranulation of human neutrophils. Recently, we showed that the leukotoxin causes activation of caspase-1 and abundant secretion of bio-active IL-1beta from human macrophages. In this study, we show that high levels of IL-beta correlated with a high proportion of A. actinomycetemcomitans in clinical samples from a patient with aggressive periodontitis. To determine the relative contribution of leukotoxin to the overall bacteria-induced IL-1beta secretion, macrophages were isolated from peripheral blood and exposed to different concentrations of live A. actinomycetemcomitans strains with either no, low or high production of leukotoxin. Cell lysis and levels of IL-1beta, IL-6, TNF-alpha and caspase-1 were measured by ELISA and flow cytometry. Leukotoxin was the predominant cause of IL-1beta secretion from macrophages, even in the A. actinomycetemcomitans strain with low leukotoxin production. Macrophages exposed to non-leukotoxic bacteria accumulated cytosolic pro-IL-1beta, which was secreted by a secondary exposure to leukotoxic bacteria. In conclusion, the present study shows for the first time that A. actinomycetemcomitans-induced IL-1beta secretion from human macrophages in vitro is mainly caused by leukotoxin.

  • 13.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Claesson, Rolf
    Umeå University, Faculty of Medicine, Department of Odontology, Oral Microbiology.
    Hänström, L
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Lerner, Ulf
    Umeå University, Faculty of Medicine, Department of Odontology, Oral Cell Biology.
    Kalfas, S
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Abundant secretion of bioactive interleukin-1beta by human macrophages induced by Actinobacillus actinomycetemcomitans leukotoxin2005In: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 73, no 1, p. 453-458Article in journal (Refereed)
    Abstract [en]

    Actinobacillus actinomycetemcomitans produces a leukotoxin that selectively kills human leukocytes. Recently, we reported that macrophages are highly sensitive to leukotoxin and that their lysis involves activation of caspase 1. In this study, we show that leukotoxin also induces the production and release of proinflammatory cytokines from human macrophages. The macrophages were challenged with leukotoxin or lipopolysaccharide (LPS) from A. actinomycetemcomitans or LPS from Escherichia coli, and the production and secretion of interleukin-1beta (IL-1beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) were determined at the mRNA and protein levels by reverse transcription-PCR and enzyme-linked immunosorbent assay, respectively. Leukotoxin (1 to 30 ng/ml) induced abundant production and secretion of IL-1beta, while the effects on IL-6 and TNF-alpha production were limited. Leukotoxin (1 ng/ml) caused a 10-times-higher release of IL-1beta than did LPS (100 ng/ml). The secreted IL-1beta was mainly the bioactive 17-kDa protein. At higher concentrations (>30 ng/ml), leukotoxin caused secretion of mainly inactive cytokine, the 31-kDa pro-IL-1beta. The presence of specific antibodies to IL-1beta or of a caspase 1 inhibitor blocked the secretion and production of the cytokine. Supernatants of leukotoxin-challenged macrophages stimulated bone resorption when tested in a mouse calvarial model. The activity could be blocked by an IL-1 receptor antagonist or specific antibodies to IL-1beta. We concluded that A. actinomycetemcomitans leukotoxin can trigger abundant production and secretion of bioactive IL-1beta by human macrophages, which is mediated by activation of caspase 1.

  • 14.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Fasth, A.
    Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
    Lif Holgerson, Pernilla
    Umeå University, Faculty of Medicine, Department of Odontology.
    Sjöström, Mats
    Umeå University, Faculty of Medicine, Department of Odontology.
    Successful complete oral rehabilitation of a patient with osteopetrosis with extensive pre-treatments, bone grafts, dental implants and fixed bridges: a multidisciplinary case report2023In: BMC Oral Health, E-ISSN 1472-6831, Vol. 23, no 1, article id 940Article in journal (Refereed)
    Abstract [en]

    Background: Osteopetrosis comprises a group of inherited disorders that are rare and result in abnormal bone structure. Bone remodeling is extremely inhibited because osteoclasts are nonfunctional or lacking. This condition causes overgrowth of bone with disappearance of the bone marrow, leading to aplastic anemia; obstruction of nerve passages in the skull leads to blindness and often hearing impairment. In most cases, osteopetrosis results in oral complications such as tooth deformation, hypomineralization, and delayed or absent tooth eruption. The only curative treatment is hematopoietic stem cell transplantation (HSCT). The main treatment of the oral complications during childhood and adolescence consists in protecting the erupted teeth against caries disease through prophylactic treatment aimed at optimal oral hygiene through frequent regular dental visits throughout life. Many patients with osteopetrosis require major oral rehabilitation to treat complications of the disease. Improved results of HSCT increase the likelihood that dental professionals will encounter patients with osteopetrosis.

    Case presentation: In this case report, we show that individuals with osteopetrosis who have severe oral complications can be treated successfully if they are treated for osteopetrosis at an early age. The boy had his dental care in pedodontics, and regular multidisciplinary meetings were held for future treatment planning. At the age of 15, he was then referred for rehabilitation. The initial evaluations revealed no further growth in the alveolar bone. The rehabilitation was done stepwise, with extraction of malformed and malpositioned teeth. Initially, the patient received a removable partial denture followed by reconstruction of the width of the alveolar process, titanium implants, temporary fixed bridges, and finally screw-retained titanium-ceramic bridges with titanium frames for the upper and lower jaws.

    Conclusions: The three-year follow-up after loading indicated a stable marginal bone level and optimal oral hygiene as a result of frequent professional oral hygiene care. The patient showed no signs of symptoms from the temporomandibular joint and has adapted to the new jaw relation without any functional or phonetical issues.

    Download full text (pdf)
    fulltext
  • 15.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology, Periodontology.
    Claesson, Rolf
    Umeå University, Faculty of Medicine, Department of Odontology, Oral Microbiology.
    Hänström, L
    Kalfas, S
    Umeå University, Faculty of Medicine, Department of Odontology, Oral Microbiology.
    Caspase 1 involvement in human monocyte lysis induced by Actinobacillus actinomycetemcomitans leukotoxin2003In: Infection and Immunity, ISSN 0019-9567, E-ISSN 1098-5522, Vol. 71, no 8, p. 4448-4455Article in journal (Refereed)
    Abstract [en]

    Actinobacillus actinomycetemcomitans, an oral bacterium implicated in the etiology of periodontal diseases, produces a leukotoxin that selectively lyses primate neutrophils and monocytes, the major populations of defense cells in the periodontium. Though lysis requires expression of the receptor lymphocyte function-associated molecule 1 (LFA-1) on the cell surface, not all LFA-1-expressing leukocyte populations are equally susceptible to the toxin. In this study, the susceptibility of human leukocytes to leukotoxin-induced lysis is compared to their expression of LFA-1 and the activity of caspase 1. Cytolysis was determined by the activity of lactate dehydrogenase released from peripheral human leukocytes after 1-h exposure to leukotoxin. Monocytes were lysed at leukotoxin concentrations of > or = 5 ng/ml, while the corresponding values for neutrophils and lymphocytes were approximately 10 times greater. Similar LFA-1 expression was found in all susceptible cell populations irrespective of their degree of sensitivity to the toxin. Exposure of monocytes to leukotoxin increased their caspase 1 activity about fivefold within 10 to 20 min. Presence of the caspase 1 inhibitor Ac-YVAD-CMK significantly blocked the leukotoxin-induced lysis of monocytes only. At sublytic concentrations, leukotoxin induced no apoptotic activity in monocytes, as revealed by the lack of caspase 3 activation and DNA fragmentation. Monocytes are the most lysis-sensitive leukocytes for A. actinomycetemcomitans leukotoxin. Their lysis by this toxin depends on caspase 1 activation and proceeds through a process that differs from classical apoptosis.

  • 16.
    Kelk, Peyman
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Mogbehl, Nick
    Umeå University, Faculty of Medicine, Department of Odontology.
    Hirschfeld, Josefine
    Periodontal Research Group, Birmingham Dental School & Hospital, University of Birmingham, Birmingham, UK.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Aggregatibacter actinomycetemcomitans Leukotoxin Activates the NLRP3 Inflammasome and Cell-to-Cell Communication2022In: Pathogens, E-ISSN 2076-0817, Vol. 11, no 2, article id 159Article in journal (Refereed)
    Abstract [en]

    Carriers of highly leukotoxic genotypes of Aggregatibacter actinomycetemcomitans are at high risk for rapid degradation of tooth-supporting tissues. The leukotoxin (LtxA) expressed by this bacterium induces a rapid pro-inflammatory response in leukocytes that results in cell death. The aim of the present study was to increase the understanding of LtxA-induced leukocyte activation mechanisms and of possible associated osteoclast differentiation. The effect of LtxA on activation of the inflammasome complex was studied in THP-1 wild type and in NLRP3- and ASC knockout cells. Cell-to-cell communication was assessed by fluorescent parachute assays, and THP-1 differentiation into osteoclast-like cells was investigated microscopically. The results showed that LtxA induced inflammatory cell death, which involved activation of the NLRP3 inflammasome and gap junction cell-to-cell communication. THP-1 cells treated with lipopolysaccharide (LPS) and LtxA together differentiated into an osteoclast-like phenotype. Here, LPS prevented LtxA-mediated cell death but failed to induce osteoclast differentiation on its own. However, pit formation was not significantly enhanced by LtxA. We conclude that A. actinomycetemcomitans leukotoxicity mediates activation of the NLRP3 inflammasome and cell-to-cell communication in the induced pro-inflammatory cell death. In addition, LtxA stimulated differentiation towards osteoclasts-like cells in LPS-treated THP-1 cells

    Download full text (pdf)
    fulltext
  • 17.
    Kolar, Mallappa Kadappa
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Itte, Vinay N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The neurotrophic effects of different human dental mesenchymal stem cells2017In: Scientific Reports, E-ISSN 2045-2322, Vol. 7, article id 12605Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 18.
    Kumar Kuna, Vijay
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lundgren, André
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Anerillas, Luis Oliveros
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Odontology.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Novikova, Ludmila N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 15, article id 8746Article in journal (Refereed)
    Abstract [en]

    Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.

    Download full text (pdf)
    fulltext
  • 19.
    Lauvrud, Anne Therese
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Gümüsçü, Rojda
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Wiberg, Rebecca
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Water jet-assisted lipoaspiration and Sepax cell separation system for the isolation of adipose stem cells with high adipogenic potential2021In: Journal of Plastic, Reconstructive & Aesthetic Surgery, ISSN 1748-6815, E-ISSN 1878-0539, Vol. 74, no 10, p. 2759-2767Article in journal (Refereed)
    Abstract [en]

    Introduction: Water jet-assisted liposuction has gained popularity due to favourable fat grafting outcomes. In this study, we compared stem cells obtained from fat isolated with manual or the water jet-assisted procedure.

    Methods: Liposuction of abdominal fat was performed using the two methods on each donor (n = 10). Aspirate samples were collagenase digested and the isolated cells seeded in vitro prior to proliferation, adipogenic differentiation and angiogenic activity analyses.

    Results: Cells from either procedure proliferated at similar rates and exhibited a similar colony-forming ability. The cells expressed stem cell markers CD73, CD90 and CD105. In the water jet cell preparations, there were higher numbers of cells expressing CD146. Robust adipogenic differentiation was observed in cultures expanded from both manual and water jet lipoaspirates. Gene analysis showed higher expression of the adipocyte markers aP2 and GLUT4 in the adipocyte-differentiated water jet cell preparations, and ELISA indicated increased secretion of adiponectin from these cells. Both cell groups expressed vasculogenic factors and the water jet cells promoted the highest levels of in vitro angiogenesis. Given these positive results, we further characterised the water jet cells when prepared using an automated closed cell processing unit, the Sepax-2 system (Cytiva). The growth and stem cell properties of the Sepax-processed cells were similar to the standard centrifugation protocol, but there was evidence for greater adipogenic differentiation in the Sepax-processed cells.

    Conclusions: Water jet lipoaspirates yield cells with high adipogenic potential and angiogenic activity, which may be beneficial for use in cell-assisted lipotransfers.

    Download full text (pdf)
    fulltext
  • 20.
    Lauvrud, Anne Therese
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties2017In: Journal of Tissue Engineering and Regenerative Medicine, ISSN 1932-6254, E-ISSN 1932-7005, Vol. 11, no 9, p. 2490-2502Article in journal (Refereed)
    Abstract [en]

    Autologous fat grafting is a popular method for soft tissue reconstructions but graft survival remains highly unpredictable. Supplementation of the graft with the stromal vascular fraction (SVF) or cultured adipose tissue-derived stem cells (ASCs) can enhance graft viability. In this study we have examined the phenotypic properties of a selected population of cells isolated from ASCs, with a view to determining their suitability for transplantation into grafts. ASCs were isolated from the SVF of human abdominal fat (n = 8 female patients) and CD146(+) cells were selected using immunomagnetic beads. The angiogenic and adipogenic properties of the positively selected cells were compared with the negative fraction. CD146(+) cells expressed the immunophenotypic characteristics of pericytes. With prolonged in vitro expansion, CD146(-) cells exhibited increased population doubling times and morphological signs of senescence, whereas CD146(+) cells did not. CD146(+) cells expressed higher levels of the angiogenic molecules VEGF-A, angiopoietin-1 and FGF-1. Conditioned medium taken from CD146(+) cells significantly increased formation of in vitro endothelial cell tube networks, whereas CD146(-) cells did not. CD146(+) cells could be differentiated into adipocytes in greater numbers than CD146(-) cells. Consistent with this, differentiated CD146(+) cells expressed higher levels of the adipocyte markers adiponectin and leptin. These results suggest that CD146(+) cells selected from a heterogeneous mix of ASCs have more favourable angiogenic and adipogenic properties, which might provide significant benefits for reconstructive and tissue-engineering applications. Copyright © 2016 John Wiley & Sons, Ltd.

  • 21.
    Mogbehl, Nick
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Oliveros Anerillas, Luis
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Österlund, Lars
    Dept. Materials Science and Engineering, Uppsala University, Uppsala, Sweden; Nanoform Science AB, Sweden.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Lammi, Mikko
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Cytokine response from THP-1 human monocytes and human bone marrow mesenchymal stem cells after exposure to nanostructured silica calcium phosphateManuscript (preprint) (Other academic)
  • 22.
    Oliveros Anerillas, Luis
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Mogbehl, Nick
    Umeå University, Faculty of Medicine, Department of Odontology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Giraudo, Maria Vittoria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Österlund, Lars
    Dept. Materials Science and Engineering, Uppsala University, Uppsala, Sweden; Nanoform Science AB, Sweden.
    Norberg, Peter
    Nanoform Science AB, Sweden.
    Lammi, Mikko
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    A nanoporous silica calcium phosphate material as a promising osteogenesis-inducing biomaterial for bone regenerationManuscript (preprint) (Other academic)
  • 23.
    Pettersson, Linda F.
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Odontology.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells from Jawbone Compared with Dental Tissue2017In: Tissue Engineering and Regenerative Medicine, ISSN 1738-2696, Vol. 14, no 6, p. 763-774Article in journal (Refereed)
    Abstract [en]

    Autologous bone transplantation is the current gold standard for reconstruction of jawbone defects. Bone regeneration using mesenchymal stem cells (MSC) is an interesting alternative to improve the current techniques, which necessitate a second site of surgery resulting in donor site morbidity. In this study, we compared the osteogenic ability of jawbone MSC (JB-MSC) with MSC from tissues with neural crest origin, namely, the dental pulp, apical papilla and periodontal ligament. All four types of MSC were isolated from the same patient (n = 3 donors) to exclude inter-individual variations. The MSC growth and differentiation properties were characterized. The osteogenic differentiation potential in each group of cells was assessed quantitatively to determine if there were any differences between the cell types. All cells expressed the MSC-associated surface markers CD73, CD90, CD105, and CD146 and were negative for CD11b, CD19, CD34, CD45 and HLA-DR. All cell types proliferated at similar rates, exhibited similar clonogenic activity and could differentiate into adipocytes and osteoblasts. An alkaline phosphatase assay, OsteoImageTM assay for mineralization and qRT-PCR measuring the genes runx2, ALP and OCN, indicated that there were no significant differences in the osteogenic differentiation ability between the various MSCs. In conclusion, we show that from a small segment of jawbone it is possible to isolate sufficient quantities of MSC and that these cells can easily be expanded and differentiated into osteoblasts. JB-MSC appear to be good candidates for future bone regeneration applications in the craniofacial region.

    Download full text (pdf)
    fulltext
  • 24.
    Pettersson, Mattias
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Histology and Cell Biology.
    Belibasakis, G. N.
    University of Zurich.
    Bylund, D.
    Mittuniversitetet Sundsvall.
    Molin Thorén, Margareta
    Umeå University, Faculty of Medicine, Department of Odontology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Titanium ions form particles that activate and execute interleukin-1β release from lipopolysaccharide-primed macrophages2017In: Journal of Periodontal Research, ISSN 0022-3484, E-ISSN 1600-0765, Vol. 52, no 1, p. 21-32Article in journal (Refereed)
    Abstract [en]

    BACKGROUND AND OBJECTIVE: Peri-implantitis is a destructive inflammatory process characterized by destruction of the implant-supporting bone. Inflammasomes are large intracellular multiprotein complexes that play a central role in innate immunity by activating the release of proinflammatory cytokines. Although inflammasome activation has previously been linked to periodontal inflammation, there is still no information on a potential association with peri-implantitis. The aim of this study was to examine cytotoxic and proinflammatory effects, including inflammasome activation, of metals used in dental implants, in an in vitro model, as well as from clinical tissue samples.

    MATERIAL AND METHODS: Human macrophages were exposed to different metals [titanium (Ti), cobalt, chromium and molybdenum] in a cell-culture assay. Cytotoxicity was determined using the neutral red uptake assay. Cytokine secretion was quantified using an ELISA, and the expression of genes of various inflammasome components was analysed using quantitative PCR. In addition, the concentrations of interleukin-1β (IL-1β) and Ti in mucosal tissue samples taken in the vicinity of dental implants were determined using ELISA and inductively coupled plasma mass spectrometry, respectively.

    RESULTS: Ti ions in physiological solutions stimulated inflammasome activation in human macrophages and consequently IL-1β release. This effect was further enhanced by macrophages that have been exposed to lipopolysaccharides. The proinflammatory activation caused by Ti ions disappeared after filtration (0.22 μm), which indicates an effect of particles. Ti ions alone did not stimulate transcription of the inflammasome components. The Ti levels of tissue samples obtained in the vicinity of Ti implants were sufficiently high (≥ 40 μm) to stimulate secretion of IL-1β from human macrophages in vitro.

    CONCLUSION: Ti ions form particles that act as secondary stimuli for a proinflammatory reaction.

    Download full text (pdf)
    fulltext
  • 25.
    Qu, Chengjuan
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology. Division of Clinical Immunology and Transfusion Medicine, Tissue Establishment, Cell Therapy Unit, Department of Laboratory Medicine, Umeå University Hospital, Umeå, Sweden.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium2020In: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 380, p. 93-105Article in journal (Refereed)
    Abstract [en]

    This study was aimed to investigate the effects of cGMP xeno-/serum-free medium (XSF, Irvine Scientific) on the properties of human dental pulp stem cells (DPSCs). DPSCs, from passage 2, were cultured in XSF or fetal bovine serum (FBS)-supplemented medium, and sub-cultured up to passage 8. Cumulative population doublings (PDs) and the number of colony-forming-units (CFUs) were determined. qRT-PCR, ELISA, and in vitro assays were used to assess angiogenic capacity. Flow cytometry was used to measure CD73, CD90, and CD105 expression. Differentiation into osteo-, adipo-, and chondrogenic cell lineages was performed. DPSCs showed more elongated morphology, a reduced rate of proliferation at later passages, and lower CFU counts in XSF compared with FBS. Expression of angiogenic factors at the gene and protein levels varied in the two media and with passage number, but cells grown in XSF had more in vitro angiogenic activity. The majority of early and late passage DPSCs cultured in XSF expressed CD73 and CD90. In contrast, the percentage of CD105 positive DPSCs in XSF medium was significantly lower with increased passage whereas the majority of cells cultured in FBS were CD105 positive. Switching XSF-cultured DPSCs to medium supplemented with human serum restored the expression of CD105. The tri-lineage differentiation of DPSCs cultured under XSF and FBS conditions was similar. We showed that despite reduced CD105 expression levels, DPSCs expanded in XSF medium maintained a functional MSC phenotype. Furthermore, restoration of CD105 expression is likely to occur upon in vivo transplantation, when cells are exposed to human serum.

    Download full text (pdf)
    fulltext
  • 26.
    Rakhimova, Olena
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Schmidt, Alexej
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landström, Maréne
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Romani Vestman, Nelly
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Department of Endodontics, County Council of Västerbotten, Umeå, Sweden.
    Cytokine Secretion, Viability, and Real-Time Proliferation of Apical-Papilla Stem Cells Upon Exposure to Oral Bacteria2021In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 10, article id 620801Article in journal (Refereed)
    Abstract [en]

    The use of stem cells from the apical papilla (SCAPs) has been proposed as a means of promoting root maturation in permanent immature teeth, and plays a significant role in regenerative dental procedures. However, the role of SCAPs may be compromised by microenvironmental factors, such as hypoxic conditions and the presence of bacteria from infected dental root canals. We aim to investigate oral bacterial modulation of SCAP in terms of binding capacity using flow cytometry and imaging, real-time cell proliferation monitoring, and cytokine secretion (IL-6, IL-8, and TGF-β isoforms) under anaerobic conditions. SCAPs were exposed to key species in dental root canal infection, namely Actinomyces gerensceriae, Slackia exigua, Fusobacterium nucleatum, and Enterococcus faecalis, as well as two probiotic strains, Lactobacillus gasseri strain B6 and Lactobacillus reuteri (DSM 17938). We found that A. gerensceriae, S. exigua, F. nucleatum, and E. faecalis, but not the Lactobacillus probiotic strains bind to SCAPs on anaerobic conditions. Enterococcus faecalis and F. nucleatum exhibited the strongest binding capacity, resulting in significantly reduced SCAP proliferation. Notably, F. nucleatum, but not E. faecalis, induce production of the proinflammatory chemokine IL-8 and IL-10 from SCAPs. Production of TGF-β1 and TGF-β2 by SCAPs was dependent on species, cell line, and time, but secretion of TGF-β3 did not vary significantly over time. In conclusion, SCAP response is compromised when exposed to bacterial stimuli from infected dental root canals in anaerobic conditions. Thus, stem cell-mediated endodontic regenerative studies need to include microenvironmental conditions, such as the presence of microorganisms to promote further advantage in the field.

    Download full text (pdf)
    fulltext
  • 27.
    Razghonova, Yelyzaveta
    et al.
    Department of Microbiology, Virology and Biotechnology, Mechnikov National University, Odesa, Ukraine.
    Zymovets, Valeriia
    Umeå University, Faculty of Medicine, Department of Odontology.
    Wadelius, Philip
    Department of Endodontics, Region of Västerbotten, Umeå, Sweden.
    Rakhimova, Olena
    Umeå University, Faculty of Medicine, Department of Odontology.
    Manoharan, Lokeshwaran
    National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Lund, Sweden.
    Brundin, Malin
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Romani Vestman, Nelly
    Umeå University, Faculty of Medicine, Department of Odontology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Transcriptome analysis reveals modulation of human stem cells from the Apical Papilla by species associated with dental root canal infection2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 22, article id 14420Article in journal (Refereed)
    Abstract [en]

    Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as their supernatants enriched by bacterial metabolites, on the osteo- and dentinogenic potential of SCAPs in vitro. We performed bulk RNA-seq, on the basis of which differential expression analysis (DEG) and gene ontology enrichment analysis (GO) were performed. DEG analysis showed that E. faecalis supernatant had the greatest effect on SCAPs, whereas F. nucleatum supernatant had the least effect (Tanimoto coefficient = 0.05). GO term enrichment analysis indicated that F. nucleatum upregulates the immune and inflammatory response of SCAPs, and E. faecalis suppresses cell proliferation and cell division processes. SCAP transcriptome profiles showed that under the influence of E. faecalis the upregulation of VEGFA, Runx2, and TBX3 genes occurred, which may negatively affect the SCAP’s osteo- and odontogenic differentiation. F. nucleatum downregulates the expression of WDR5 and TBX2 and upregulates the expression of TBX3 and NFIL3 in SCAPs, the upregulation of which may be detrimental for SCAPs’ differentiation potential. In conclusion, the present study shows that in vitro, F. nucleatum, E. faecalis, and their metabolites are capable of up- or downregulating the expression of genes that are necessary for dentinogenic and osteogenic processes to varying degrees, which eventually may result in unsuccessful RET outcomes. Transposition to the clinical context merits some reservations, which should be approached with caution.

    Download full text (pdf)
    fulltext
  • 28.
    Zymovets, Valeriia
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Rakhimova, Olena
    Umeå University, Faculty of Medicine, Department of Odontology.
    Wadelius, Philip
    Department of Endodontics, Region of Västerbotten, Umeå, Sweden.
    Schmidt, Alexej
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Brundin, Malin
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Landström, Maréne
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Romani Vestman, Nelly
    Umeå University, Faculty of Medicine, Department of Odontology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Exploring the impact of oral bacteria remnants on stem cells from the Apical papilla: mineralization potential and inflammatory response2023In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 13, article id 1257433Article in journal (Refereed)
    Abstract [en]

    Introduction: Bacterial persistence is considered one of the main causal factors for regenerative endodontic treatment (RET) failure in immature permanent teeth. This interference is claimed to be caused by the interaction of bacteria that reside in the root canal with the stem cells that are one of the essentials for RET. The aim of the study was to investigate whether prolonged exposure of stem cells from the apical papilla (SCAP) to bacterial remnants of Fusobacterium nucleatum, Actinomyces gerensceriae, Slackia exigua, Enterococcus faecalis, Peptostreptococcaceae yurii, commonly found in infected traumatized root canals, and the probiotic bacteria Lactobacillus gasseri and Limosilactobacillus reuteri, can alter SCAP’s inflammatory response and mineralization potential.

    Methods: To assess the effect of bacterial remnants on SCAP, we used UV-C–inactivated bacteria (as cell wall-associated virulence factors) and bacterial DNA. Histochemical staining using Osteoimage Mineralization Assay and Alizarin Red analysis was performed to study SCAP mineralization, while inflammatory and osteo/odontogenic-related responses of SCAPs were assessed with Multiplex ELISA.

    Results: We showed that mineralization promotion was greater with UV C–inactivated bacteria compared to bacterial DNA. Immunofluorescence analysis detected that the early mineralization marker alkaline phosphatase (ALP) was increased by the level of E. coli lipopolysaccharide (LPS) positive control in the case of UV-C–inactivated bacteria; meanwhile, DNA treatment decreased the level of ALP compared to the positive control. SCAP’s secretome assessed with Multiplex ELISA showed the upregulation of pro-inflammatory factors IL-6, IL-8, GM-CSF, IL-1b, neurotrophic factor BDNF, and angiogenic factor VEGF, induced by UV-C–killed bacteria.

    Discussion: The results suggest that long term stimulation (for 21 days) of SCAP with UV-C–inactivated bacteria stimulate their mineralization and inflammatory response, while DNA influence has no such effect, which opens up new ideas about the nature of RET failure.

    Download full text (pdf)
    fulltext
  • 29.
    Zymovets, Valeriia
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology. Department of Microbiology, Virology and Biotechnology, Mechnikov National University, Odesa, Ukraine.
    Razghonova, Yelyzaveta
    Department of Microbiology, Virology and Biotechnology, Mechnikov National University, Odesa, Ukraine.
    Rakhimova, Olena
    Umeå University, Faculty of Medicine, Department of Odontology.
    Aripaka, Karthik
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Manoharan, Lokeshwaran
    National Bioinformatics Infrastructure Sweden, Lund University, Lund, Sweden.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Landström, Maréne
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Romani Vestman, Nelly
    Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Department of Endodontics, Region of Västerbotten, Umea, Sweden.
    Combined Transcriptomic and Protein Array Cytokine Profiling of Human Stem Cells from Dental Apical Papilla Modulated by Oral Bacteria2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 9, article id 5098Article in journal (Refereed)
    Abstract [en]

    Stem cells from the apical papilla (SCAP) are a promising resource for use in regenerative endodontic treatment (RET) that may be adversely affected by oral bacteria, which in turn can exert an effect on the success of RET. Our work aims to study the cytokine profile of SCAP upon exposure to oral bacteria and their supernatants—Fusobacterium nucleatum and Enterococcus faecalis—as well as to establish their effect on the osteogenic and immunogenic potentials of SCAP. Further, we target the presence of key proteins of the Wnt/β-Catenin, TGF-β, and NF-κB signaling pathways, which play a crucial role in adult osteogenic differentiation of mesenchymal stem cells, using the Western blot (WB) technique. The membrane-based sandwich immunoassay and transcriptomic analysis showed that, under the influence of F. nucleatum (both bacteria and supernatant), the production of pro-inflammatory cytokines IL-6, IL-8, and MCP-1 occurred, which was also confirmed at the mRNA level. Conversely, E. faecalis reduced the secretion of the aforementioned cytokines at both mRNA and protein levels. WB analysis showed that SCAP co-cultivation with E. faecalis led to a decrease in the level of the key proteins of the Wnt/β-Catenin and NF-κB signaling pathways: β-Catenin (p = 0.0068 *), LRP-5 (p = 0.0059 **), and LRP-6 (p = 0.0329 *), as well as NF-kB (p = 0.0034 **) and TRAF6 (p = 0.0285 *). These results suggest that oral bacteria can up-and downregulate the immune and inflammatory responses of SCAP, as well as influence the osteogenic potential of SCAP, which may negatively regulate the success of RET.

    Download full text (pdf)
    fulltext
1 - 29 of 29
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf