umu.sePublications
Change search
Refine search result
1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Chandra, Naresh
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Liu, Yan
    Liu, Jing-Xia
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Wu, Nian
    Silva, Lisete M
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Chai, Wengang
    Domellöf, Fatima Pedrosa
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Feizi, Ten
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Sulfated Glycosaminoglycans as Viral Decoy Receptors for Human Adenovirus Type 372019In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 11, no 3, article id E247Article in journal (Refereed)
    Abstract [en]

    Glycans on plasma membranes and in secretions play important roles in infection by many viruses. Species D human adenovirus type 37 (HAdV-D37) is a major cause of epidemic keratoconjunctivitis (EKC) and infects target cells by interacting with sialic acid (SA)-containing glycans via the fiber knob domain of the viral fiber protein. HAdV-D37 also interacts with sulfated glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, we investigated the molecular requirements of HAdV-D37 fiber knob:GAG interactions using a GAG microarray and demonstrated that fiber knob interacts with a broad range of sulfated GAGs. These interactions were corroborated in cell-based assays and by surface plasmon resonance analysis. Removal of heparan sulfate (HS) and sulfate groups from human corneal epithelial (HCE) cells by heparinase III and sodium chlorate treatments, respectively, reduced HAdV-D37 binding to cells. Remarkably, removal of HS by heparinase III enhanced the virus infection. Our results suggest that interaction of HAdV-D37 with sulfated GAGs in secretions and on plasma membranes prevents/delays the virus binding to SA-containing receptors and inhibits subsequent infection. We also found abundant HS in the basement membrane of the human corneal epithelium, which may act as a barrier to sub-epithelial infection. Collectively, our findings provide novel insights into the role of GAGs as viral decoy receptors and highlight the therapeutic potential of GAGs and/or GAG-mimetics in HAdV-D37 infection.

  • 2.
    Domellöf, Fatima Pedrosa
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Parkkonen, Kimmo
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Nord, Hanna
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    von Hoffsten, Jonas
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Li, Zhenlin
    Univ Paris 06, CNRS, INSERM, Inst Biol Paris Seine, Paris, France.
    Desmin in extraocular muscles2015In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 56, no 7Article in journal (Other academic)
  • 3.
    Eriksson, Anders
    et al.
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Carlsson, Lena
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Hypertrophic muscle fibers with fissures in power-lifters; fiber splitting or defect regeneration?2006In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 126, no 4, p. 409-417Article in journal (Refereed)
    Abstract [en]

    Power-lifters have hypertrophic muscle fibers with fissures seen in cross-sections, called as fiber splitting.Whether this phenomenon is due to real splitting or defective regeneration has not been settled. To elucidate this matter,we have examined biopsies from the trapezius and vastus lateralis of power lifters (P group) and power lifters self-administrating anabolic steroids (PAS group). For this purpose, immunohistochemical staining of serial cross -sections was used. The PAS group had significantly more fibers with fissures than the P group in the vastus lateralis (1.2%+/-0.95% vs 0.35+/-0.34, P < 0.05) but not in the trapezius muscle (1.7% in both groups). Serial sections revealed that the fibers with fissures changed their profile profoundly over short distances. Some such fibers had a mature staining profile, whereas other fibers indicated recent degeneration and/or regeneration. Activation of satellite cells and formation of aberrant segments were also evident. We conclude that the so-called split fibers are due to defect regeneration. Some fibers with fissures are the results of old events of segmental muscle fiber damage, whereas the others reflect an ongoing process. The normal regenerative process is most likely disturbed in power-lifters by their continuous training with repeated high mechanical stress on the muscles.

  • 4.
    Janbaz, Adrihan H.
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Liu, Jingxia
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Pedrosa-Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Intermediate Filaments in the Human Extraocular Muscles2014In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 55, no 8, p. 5151-5159Article in journal (Refereed)
    Abstract [en]

    PURPOSE.

    To investigate the distribution of the intermediate filament (IF) proteins desmin, vimentin, and nestin in human extraocular muscles (EOMs). METHODS. Healthy adult EOM samples were serially sectioned (5 and 1 mu m) and processed for immunohistochemistry, with specific antibodies (Abs) against desmin, vimentin, and nestin and different myosin heavy chains (MyHCs), including the newly characterized Ab MYH7b against MyHC slow tonic. The distribution of desmin was also studied in EOMs at 16 to 18 weeks of gestation.

    RESULTS.

    Desmin was present in the vast majority of muscle fibers. Notably, muscle fibers that contained MyHC slow tonic were either unlabeled or very weakly labeled with three different Abs against desmin. These muscle fibers had normal cytoarchitecture and intact basement membrane. In fetal muscle, desmin was also absent or weak in myotubes containing MyHC slow tonic. Nestin was detected in a large proportion of muscle fibers in the orbital layer and to some extent also in the global layer, whereas no muscle fibers contained vimentin. Desmin and nestin were enriched at neuromuscular junctions, as in limb muscle. In contrast, some myotendinous junctions lacked desmin or nestin.

    CONCLUSIONS.

    The human EOMs differed significantly from the other muscles in the body with respect to their IF composition. Desmin, hitherto regarded as a ubiquitous muscle cytoskeletal protein, was absent or only present in trace amounts in a subset of normal muscle fibers in adult and fetal EOMs. Nestin, normally downregulated early in the postnatal period, was present in a high proportion of adult muscle fibers.

  • 5.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Satellite cells in human skeletal muscle: molecular identification quantification and function2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Skeletal muscle satellite cells located between the plasma membrane and the basal lamina of muscle fibres, could for many years, only be studied in situ by electron microscopy. The introduction of immunohistochemistry and the discovery of molecular markers of satellite cells then made them accessible for light microscopic studies and a wealth of information is today available. Satellite cells are myogenic stem cells that can be activated from a quiescent state to proliferate for self-renewal or differentiate into myogenic cells. The satellite cells are involved in muscle growth during fetal and postnatal development and play a key role in repair and regeneration of damaged muscle fibres. The satellite cells are also essential for muscle fibre hypertrophy and maintenance of muscle mass in the adult. When the present thesis was initiated, studies on satellite cells in human skeletal muscle relied on the neuronal cell adhesion molecule (NCAM) as a marker for satellite cell identification. The results from different studies varied markedly. Therefore the aims of the present thesis were i) to develop a highly reliable method using light microscopy for satellite cell identification and quantification in biopsies of human skeletal muscle in normal and pathological conditions. A molecular marker for the myofibre basal lamina or plasma membrane to enhance the reliability of myonuclei and satellite cell identification were to be included. Furthermore unbiased morphometric methods should be used in the quantification process. ii) to evaluate which molecular markers which had been described for satellite cell and stem cell identification in different cell states (quiescence, activated or differentiated) are the most useful for studies on human skeletal muscle. iii) to further explore the function and heterogeneity of satellite cells with respect to different markers in human skeletal muscle by studying the effects of strength-training, intake of anabolic substances and pathological conditions.

    A new immunofluorescence method was developed where in the same tissue section, two satellite cell markers, the basal lamina and nuclei were monitored. From the evaluation of different markers it was found that both NCAM and Pax7 identified the majority of satellite cells but that both markers were needed for reliable identification. The members of the myogenic regulatory family were evaluated and by using the new method MyoD and myogenin were found to be useful markers to identify activated and differentiated satellite cells. Upon re-examination of biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects it was observed that the new results on satellite cell frequency were significantly different from those obtained when using staining for NCAM and nuclei alone. In addition three subtypes of satellite cells (94.4% NCAM+/Pax7+, 4.2% NCAM+/Pax7 and 1.4% NCAM/Pax7+) were observed. Thus the multiple marker method gave more information about satellite cells heterogeneity in human muscle and we propose that this is more reliable than previous methods. Low numbers of MyoD or myogenin stained satellite cells were observed in both untrained and strength trained subjects. Other markers such as DLK1/FA1, a member of the EGF-like family and c-Met, the receptor for hepatocyte growth factor showed that satellite cell heterogeneity in human muscle is far greater than previously shown. Furthermore, new evidence is presented for so called fibre splitting observed in hypertrophic muscle fibres to be due to defect regeneration of partially damaged fibres.

  • 6.
    Lindström, Mona
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pedrosa-Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Satellite cell heterogeneity with respect to expression of MyoD, myogenin, Dlk1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men2010In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 134, no 4, p. 371-385Article in journal (Refereed)
    Abstract [en]

    Human satellite cells (SCs) are heterogeneous with respect to markers for their identification in the niche between the muscle fibre plasma membrane and its basal lamina. We have previously shown that, in biopsies from highly competitive power lifters, power lifters with long-term use of anabolic steroids and a population of healthy sedentary men, antibodies against the neuronal cell adhesion molecule (NCAM) and the paired box transcription factor Pax7 together label 94% of the SCs, NCAM alone labels 4% and Pax7 alone labels 1%. In the present study, we have further studied these biopsies with four markers related to SC activation and differentiation. Our study unequivocally shows that staining for MyoD and myogenin are present in nuclei of SCs and of myoblasts and myotubes in areas of muscle fibre regeneration. Staining for c-Met was observed in a proportion of Pax7+ SCs. However, widespread labelling of the sarcolemma precluded the quantification of c-Met+/Pax7+ SCs and the use of c-Met as a reliable SC marker. Pax7+ SCs labelled by anti-Delta like1 (Dlk1) were present in all samples but in variable proportions, whereas muscle progenitor cells related to repair were Dlk1⁻. Staining for Dlk1 was also observed in Pax7⁻ interstitial cells and in the cytoplasm of some small muscle fibres. Interestingly, the proportion of Dlk1+/Pax7+ SCs was significantly different between the groups of power lifters. Thus, our study confirms that human SCs show marked heterogeneity and this is discussed in terms of SC activation, myonuclei turnover, muscle fibre growth and muscle fibre damage and repair.

  • 7.
    Lindström, Mona
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    New multiple labelling method for improved satellite cell identification in human muscle: application to a cohort of power-lifters and sedentary men.2009In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 132, no 2, p. 141-57Article in journal (Refereed)
    Abstract [en]

    Presently applied methods to identify and quantify human satellite cells (SCs) give discrepant results. We introduce a new immunofluorescence method that simultaneously monitors two SC markers (NCAM and Pax7), the basal lamina and nuclei. Biopsies from power-lifters, power-lifters using anabolic substances and untrained subjects were re-examined. Significantly different results from those with staining for NCAM and nuclei were observed. There were three subtypes of SCs; NCAM(+)/Pax7(+) (94%), NCAM(+)/Pax7(-) (4%) and NCAM(-)/Pax7(+) (1%) but large individual variability existed. The proportion of SCs per nuclei within the basal lamina of myofibres (SC/N) was similar for all groups reflecting a balance between the number of SCs and myonuclei to maintain homeostasis. We emphasise that it is important to quantify both SC/N and the number of SCs per fibre. Our multiple marker method is more reliable for SC identification and quantification and can be used to evaluate other markers of muscle progenitor cells.

  • 8.
    Lindström, Mona
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Tjust, Anton E.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Domellöf, Fatima Pedrosa
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Pax7-Positive Cells/Satellite Cells in Human Extraocular Muscles2015In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 56, no 10, p. 6132-6143Article in journal (Refereed)
    Abstract [en]

    PURPOSE. We quantified and investigated the distribution of Pax7-positive cells/satellite cells (SCs) in the human extraocular muscles (EOMs). METHODS. An immunofluorescence multiple-marker method simultaneously combining two SC markers (Pax7, NCAM), detection of the basement membrane (laminin) and cell nuclei (4',6-diamidino-2-phenylindole [DAPI]), was used on the anterior, middle, and posterior portions of EOMs from five healthy donors. Pax7-positive cell and SC content, myonuclear content, myofiber cross-sectional area, and myonuclear domain were analyzed in single cross-sections. Between 3915 and 13,536 myofibers per muscle cross-section and myofibers from the entire EOM cross-section were analyzed for quantification of Pax7-positive cells per myofiber (Pax7/F).

    RESULTS. The number of Pax7/F in the human EOMs varies along the length of the muscle with twice as high Pax7/F in the anterior part of the EOMs, but within the range of what has been previously reported for normal adult limb muscles. Furthermore, there are Pax7-positive cells in positions other than the classical SC position and the myonuclear domain size of adult EOMs is noticeably smaller than that previously reported for other adult skeletal muscles.

    CONCLUSIONS. Previous data on differences in Pax7-positive cell/SC abundance between EOMs and limb muscles must be reconsidered and the characteristics of different Pax7-positive cell populations further investigated. Higher numbers of Pax7-positive cells in the anterior portion of the EOMs may have a bearing for strabismus surgery involving sectioning of the muscle fibers.

  • 9. McLoon, Linda K.
    et al.
    Vicente, André
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Fitzpatrick, Krysta R.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pedrosa Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Composition, architecture, and functional implications of the connective tissue network of the extraocular muscles2018In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 59, no 1, p. 322-329Article in journal (Refereed)
    Abstract [en]

    Purpose: We examined the pattern and extent of connective tissue distribution in the extraocular muscles (EOMs) and determined the ability of the interconnected connective tissues to disseminate force laterally.

    Methods: Human EOMs were examined for collagens I, III, IV, and VI; fibronectin; laminin; and elastin using immunohistochemistry. Connective tissue distribution was examined with scanning electron microscopy. Rabbit EOMs were examined for levels of force transmission longitudinally and transversely using in vitro force assessment.

    Results: Collagens I, III, and VI localized to the endomysium, perimysium, and epimysium. Collagen IV, fibronectin, and laminin localized to the basal lamina surrounding all myofibers. All collagens localized similarly in the orbital and global layers throughout the muscle length. Elastin had the most irregular pattern and ran longitudinally and circumferentially throughout the length of all EOMs. Scanning electron microscopy showed these elements to be extensively interconnected, from endomysium through the perimysium to the epimysium surrounding the whole muscle. In vitro physiology demonstrated force generation in the lateral dimension, presumably through myofascial transmission, which was always proportional to the force generated in the longitudinally oriented muscles.

    Conclusions: A striking connective tissue matrix interconnects all the myofibers and extends, via perimysial connections, to the epimysium. These interconnections are significant and allow measurable force transmission laterally as well as longitudinally, suggesting that they may contribute to the nonlinear force summation seen in motor unit recording studies. This provides strong evidence that separate compartmental movements are unlikely as no region is independent of the rest of the muscle.

  • 10.
    Pedrosa-Domellöf, Fatima
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    McLoon, Linda K.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    A sturdy connective tissue network surrounds all the extraocular muscle fibers2016In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 57, no 12Article in journal (Refereed)
  • 11.
    Pontén, Eva
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kadi, Fawzi
    Higher amount of MyHC IIX in a wrist flexor in tetraplegic compared to hemiplegic cerebral palsy.2007In: J Neurol Sci, ISSN 0022-510XArticle in journal (Other academic)
    Abstract [en]

    Spastic cerebral palsy can be divided into diagnostic groups by the relative severity of the arm impairment. This study investigates if hemiplegic, tetraplegic or diplegic cerebral palsy (CP) results in different patterns of myosin heavy chain (MyHC) expression in the flexor carpi ulnaris muscle from 17 young patients with CP. Using enzyme-immunohistochemistry and gel electrophoresis techniques we found a higher percentage of fibers expressing fast MyHC IIx (52%) in tetraplegic CP compared to hemiplegic patients (32%), (p&lt;0.05). Tetraplegic CP also resulted in a lower amount of fibers expressing slow MyHC I (18%) compared to hemiplegic CP (40%), (p&lt;0.005). The proportion of muscle fibers containing fetal MyHC was higher in tetraplegic CP compared to other groups, (p&lt;0.005). Taken together theses results indicate that tetraplegic CP is associated with a shift from slow to fast myosins and that regenerative events are more prominent in tetraplegic CP compared with milder brain damage.

  • 12.
    Radovanovic, Dina
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Peikert, Kevin
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pedrosa Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Sympathetic innervation of human muscle spindles2015In: Journal of Anatomy, ISSN 0021-8782, E-ISSN 1469-7580, Vol. 226, no 6, p. 542-548Article in journal (Refereed)
    Abstract [en]

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes.

  • 13.
    Storm, Rickard J
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Persson, David B
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Skalman, Lars Nygård
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Rankin, Greg
    Lundmark, Richard
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Domellöf, Fatima Pedrosa
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Human Adenovirus Type 37 Uses αVβ1 and α3β1 Integrins for Infection of Human Corneal Cells2017In: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 91, no 5, article id e02019-16Article in journal (Refereed)
    Abstract [en]

    Epidemic keratoconjunctivitis (EKC) is a severe, contagious ocular disease that affects 20 to 40 million individuals worldwide every year. EKC is mainly caused by six types of human adenovirus (HAdV): HAdV-8, -19, -37, -53, -54, and -56. Of these, HAdV-8, -19, and -37 use sialic acid-containing glycans as cellular receptors. αVβ3, αVβ5, and a few additional integrins facilitate entry and endosomal release of other HAdVs. With the exception of a few biochemical analyses indicating that HAdV-37 can interact physically with αVβ5, little is known about the integrins used by EKC-causing HAdVs. Here, we investigated the overall integrin expression on human corneal cells and found expression of α2, α3, α6, αV, β1, and β4 subunits in human corneal in situ epithelium and/or in a human corneal epithelial (HCE) cell line but no or less accessible expression of α4, α5, β3, or β5. We also identified the integrins used by HAdV-37 through a series of binding and infection competition experiments and different biochemical approaches. Together, our data suggest that HAdV-37 uses αVβ1 and α3β1 integrins for infection of human corneal epithelial cells. Furthermore, to confirm the relevance of these integrins in the HAdV-37 life cycle, we developed a corneal multilayer tissue system and found that HAdV-37 infection correlated well with the patterns of αV, α3, and β1 integrin expression. These results provide further insight into the tropism and pathogenesis of EKC-causing HAdVs and may be of importance for future development of new antiviral drugs.IMPORTANCE Keratitis is a hallmark of EKC, which is caused by six HAdV types (HAdV-8, -19, -37, -53, -54, and -56). HAdV-37 and some other HAdV types interact with integrin αVβ5 in order to enter nonocular human cells. In this study, we found that αVβ5 is not expressed on human corneal epithelial cells, thus proposing other host factors mediate corneal infection. Here, we first characterized integrin expression patterns on corneal tissue and corneal cells. Among the integrins identified, competition binding and infection experiments and biochemical assays pointed out αVβ1 and α3β1 to be of importance for HAdV-37 infection of corneal tissue. In the absence of a good animal model for EKC-causing HAdVs, we also developed an in vitro system with multilayer HCE cells and confirmed the relevance of the suggested integrins during HAdV-37 infection.

  • 14.
    Thornell, Lars-Eric
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Renault, V
    Mouly, V
    Butler-Browne, G S
    Satellite cells and training in the elderly.2003In: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838, Vol. 13, no 1, p. 48-55Article in journal (Refereed)
    Abstract [en]

    In the present review, we describe the effects of ageing on human muscle fibres, underlining that each human muscle is unique, meaning that the phenotype becomes specifically changed upon ageing in different muscles, and that the satellite cells are key cells in the regeneration and growth of muscle fibres. Satellite cells are closely associated with muscle fibres, located outside the muscle fibre sarcolemma but beneath the basement lamina. They are quiescent cells, which become activated by stimulation, like muscle fibre injury or increased muscle tension, start replicating and are responsible for the repair of injured muscle fibres and the growth of muscle fibres. The degree of replication is governed by the telomeric clock, which is affected upon excessive bouts of degeneration and regeneration as in muscular dystrophies. The telomeric clock, as in dystrophies, does not seem to be a limiting factor in ageing of human muscle. The number of satellite cells, although reduced in number in aged human muscles, has enough number of cell divisions left to ensure repair throughout the human life span. We propose that an active life, with sufficient general muscular activity, should be recommended to reduce the impairment of skeletal muscle function upon ageing.

  • 15.
    Thornell, Lars-Eric
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lindstöm, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Renault, Valerie
    Klein, Arnaud
    Mouly, Vincent
    Ansved, Tor
    Butler-Browne, Gillian
    Furling, Denis
    Satellite cell dysfunction contributes to the progressive muscle atrophy in myotonic dystrophy type 12009In: Neuropathology and Applied Neurobiology, ISSN 0305-1846, E-ISSN 1365-2990, Vol. 35, no 6, p. 529-633Article in journal (Refereed)
    Abstract [en]

    ABSTRACT Aims: Myotonic Dystrophy type 1 (DM1), one of the most common forms of inherited neuromuscular disorders in the adult, is characterized by progressive muscle weakness and wasting leading to distal muscle atrophy whereas proximal muscles of the same patients are spared during the early phase of the disease. In this report, the role of satellite cell dysfunction in the progressive muscular atrophy has been investigated. Methods: Biopsies were obtained from distal and proximal muscles of the same DM1 patients. Histological and immunohistological analyses were carried out and the past regenerative history of the muscle was evaluated. Satellite cell number was quantified in vivo and proliferative capacity was determined in vitro. Results: The size of the CTG expansion was positively correlated with the severity of the symptoms and the degree of muscle histopathology. Marked atrophy associated with typical DM1 features was observed in distal muscles of severely affected patients whereas proximal muscles were relatively spared. The number of satellite cells was significantly increased (2-fold) in the distal muscles whereas very little regeneration was observed as confirmed by telomere analyses and developmental MyHC staining (0,3% to 3%). The satellite cells isolated from the DM1 distal muscles had a reduced proliferative capacity (36%) and stopped growing prematurely with telomeres longer than control cells (8,4kb vs 7,1kb) indicating that the behaviour of these precursor cells was modified. Conclusions: Our results indicate that alterations in the basic functions of the satellite cells progressively impair the muscle mass maintenance and/or regeneration resulting in gradual muscular atrophy.

  • 16.
    Tjust, Anton
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Sjöström, Johan
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Andersen, Peter M
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Pedrosa Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Satellite cells and other muscle progenitor cells in extraocular muscles and limb muscles of ALS donorsManuscript (preprint) (Other academic)
  • 17.
    Vicente, André
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Byström, Berit
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Stenevi, Ulf
    Pedrosa Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Aniridia-related keratopathy: structural changes in naïve and transplanted corneal buttons2018In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 13, no 6, article id e0198822Article in journal (Refereed)
    Abstract [en]

    Background: To study structural changes in naive and surgically treated corneas of aniridia patients with advanced aniridia-related keratopathy (ARK).

    Methods and findings: Two naive corneal buttons from patients with advanced ARK submitted to penetrating keratoplasty for the first time, one corneal button from an ARK patient that had undergone a keratolimbal allograft (KLAL), two corneal buttons from ARK patients who had previously undergone centered or decentered transplantation and were now retransplanted and two adult healthy donor control corneas were processed for immunohistochemistry. Antibodies against extracellular matrix components in the stroma and in the epithelial basement membrane (collagen I and IV, collagen receptor alpha 11 integrin and laminin alpha 3 chain), markers of fibrosis, wound healing and vascularization (fibronectin, tenascin-C, vimentin, alpha-SMA and caveolin-1), cell division (Ki-67) and macrophages (CD68) were used. Naive ARK, KLAL ARK corneas and transplanted corneal buttons presented similar histopathological changes with irregular epithelium and disruption or absence of epithelial basal membrane. There was a loss of the orderly pattern of collagen lamellae and absence of collagen I in all ARK corneas. Vascularization was revealed by the presence of caveolin-1 and collagen IV in the pannus of all ARK aniridia corneas. The changes observed in decentered and centered transplants were analogous.

    Conclusions: Given the similar pathological features of all cases, conditions inherent to the host seem to play an important role on the pathophysiology of the ARK in the long run.

  • 18.
    Österlund, Catharina
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology, Clinical Oral Physiology. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Eriksson, Per-Olof
    Umeå University, Faculty of Medicine, Department of Odontology, Clinical Oral Physiology.
    Remarkable heterogeneity in myosin heavy-chain composition of the human young masseter compared with young biceps brachii2012In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 138, no 4, p. 669-682Article in journal (Refereed)
    Abstract [en]

    Adult human jaw muscles differ from limb and trunk muscles in enzyme-histochemical fibre type composition. Recently, we showed that the human masseter and biceps differ in fibre type pattern already at childhood. The present study explored the myosin heavy-chain (MyHC) expression in the young masseter and biceps muscles by means of gel electrophoresis (GE) and immuno-histochemical (IHC) techniques. Plasticity in MyHC expression during life was evaluated by comparing the results with the previously reported data for adult muscles. In young masseter, GE identified MyHC-I, MyHC-IIa MyHC-IIx and small proportions of MyHC-fetal and MyHC-alpha cardiac. Western blots confirmed the presence of MyHC-I, MyHC-IIa and MyHC-IIx. IHC revealed in the masseter six isomyosins, MyHC-I, MyHC-IIa, MyHC-IIx, MyHC-fetal, MyHC alpha-cardiac and a previously not reported isoform, termed MyHC-IIx'. The majority of the masseter fibres co-expressed two to four isoforms. In the young biceps, both GE and IHC identified MyHC-I, MyHC-IIa and MyHC-IIx. MyHC-I predominated in both muscles. Young masseter showed more slow and less-fast and fetal MyHC than the adult and elderly masseter. These results provide evidence that the young masseter muscle is unique in MyHC composition, expressing MyHC-alpha cardiac and MyHC-fetal isoforms as well as hitherto unrecognized potential spliced isoforms of MyHC-fetal and MyHC-IIx. Differences in masseter MyHC expression between young adult and elderly suggest a shift from childhood to adulthood towards more fast contractile properties. Differences between masseter and biceps are proposed to reflect diverse evolutionary and developmental origins and confirm that the masseter and biceps present separate allotypes of muscle.

1 - 18 of 18
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf