umu.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bollhöner, Benjamin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zhang, Bo
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Stael, Simon
    Denancé, Nicolas
    Overmyer, Kirk
    Goffner, Deborah
    Van Breusegem, Frank
    Tuominen, Hannele
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Post mortem function of AtMC9 in xylem vessel elements2013In: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 200, no 2, p. 498-510Article in journal (Refereed)
    Abstract [en]

    Cell death of xylem elements is manifested by rupture of the tonoplast and subsequent autolysis of the cellular contents. Metacaspases have been implicated in various forms of plant cell death but regulation and execution of xylem cell death by metacaspases remains unknown. Analysis of the type II metacaspase gene family in Arabidopsis thaliana supported the function of METACASPASE 9 (AtMC9) in xylem cell death. Progression of xylem cell death was analysed in protoxylem vessel elements of 3-d-old atmc9 mutant roots using reporter gene analysis and electron microscopy. Protoxylem cell death was normally initiated in atmc9 mutant lines, but detailed electron microscopic analyses revealed a role for AtMC9 in clearance of the cell contents post mortem, that is after tonoplast rupture. Subcellular localization of fluorescent AtMC9 reporter fusions supported a post mortem role for AtMC9. Further, probe-based activity profiling suggested a function of AtMC9 on activities of papain-like cysteine proteases. Our data demonstrate that the function of AtMC9 in xylem cell death is to degrade vessel cell contents after vacuolar rupture. We further provide evidence on a proteolytic cascade in post mortem autolysis of xylem vessel elements and suggest that AtMC9 is part of this cascade.

  • 2.
    Escamez, Sacha
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    André, Domenique
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå S-901 83, Sweden.
    Zhang, Bo
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Bollhöner, Benjamin
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Pesquet, Edouard
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
    Tuominen, Hannele
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    METACASPASE9 modulates autophagy to confine cell death tothe target cells during Arabidopsis vascular xylem differentiation2016In: Biology Open, ISSN 2046-6390, Vol. 5, no 2, p. 122-129Article in journal (Refereed)
    Abstract [en]

    We uncovered that the level of autophagy in plant cells undergoingprogrammed cell death determines the fate of the surrounding cells.Our approach consisted of using Arabidopsis thaliana cell culturescapable of differentiating into two different cell types: vasculartracheary elements (TEs) that undergo programmed cell death(PCD) and protoplast autolysis, and parenchymatic non-TEs thatremain alive. The TE cell type displayed higher levels of autophagywhen expression of the TE-specific METACASPASE9 (MC9) wasreduced using RNAi (MC9-RNAi). Misregulation of autophagy in theMC9-RNAi TEs coincided with ectopic death of the non-TEs, implyingthe existence of an autophagy-dependent intercellular signallingfrom within the TEs towards the non-TEs. Viability of the non-TEswas restored when AUTOPHAGY2 (ATG2) was downregulatedspecifically in MC9-RNAi TEs, demonstrating the importance ofautophagy in the spatial confinement of cell death. Our resultssuggest that other eukaryotic cells undergoing PCD might also needto tightly regulate their level of autophagy to avoid detrimentalconsequences for the surrounding cells.

  • 3. Nystedt, Björn
    et al.
    Street, Nathaniel Robert
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Wetterbom, Anna
    Zuccolo, Andrea
    Lin, Yao-Cheng
    Scofield, Douglas G.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Vezzi, Francesco
    Delhomme, Nicolas
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Giacomello, Stefania
    Alexeyenko, Andrey
    Vicedomini, Riccardo
    Sahlin, Kristoffer
    Sherwood, Ellen
    Elfstrand, Malin
    Gramzow, Lydia
    Holmberg, Kristina
    Hällman, Jimmie
    Keech, Olivier
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Klasson, Lisa
    Koriabine, Maxim
    Kucukoglu, Melis
    Käller, Max
    Luthman, Johannes
    Lysholm, Fredrik
    Niittylä, Totte
    Olson, Åke
    Rilakovic, Nemanja
    Ritland, Carol
    Rosselló, Josep A.
    Sena, Juliana
    Svensson, Thomas
    Talavera-López, Carlos
    Theißen, Günter
    Tuominen, Hannele
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Vanneste, Kevin
    Wu, Zhi-Qiang
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zhang, Bo
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zerbe, Philipp
    Arvestad, Lars
    Bhalerao, Rishikesh
    Bohlmann, Joerg
    Bousquet, Jean
    Gil, Rosario Garcia
    Hvidsten, Torgeir R.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    de Jong, Pieter
    MacKay, John
    Morgante, Michele
    Ritland, Kermit
    Sundberg, Björn
    Thompson, Stacey Lee
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Van de Peer, Yves
    Andersson, Björn
    Nilsson, Ove
    Ingvarsson, Pär K.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Lundeberg, Joakim
    Jansson, Stefan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    The Norway spruce genome sequence and conifer genome evolution2013In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 497, no 7451, p. 579-584Article in journal (Refereed)
    Abstract [en]

    Conifers have dominated forests for more than 200 million years and are of huge ecological and economic importance. Here we present the draft assembly of the 20-gigabase genome of Norway spruce (Picea abies), the first available for any gymnosperm. The number of well-supported genes (28,354) is similar to the >100 times smaller genome of Arabidopsis thaliana, and there is no evidence of a recent whole-genome duplication in the gymnosperm lineage. Instead, the large genome size seems to result from the slow and steady accumulation of a diverse set of long-terminal repeat transposable elements, possibly owing to the lack of an efficient elimination mechanism. Comparative sequencing of Pinus sylvestris, Abies sibirica, Juniperus communis, Taxus baccata and Gnetum gnemon reveals that the transposable element diversity is shared among extant conifers. Expression of 24-nucleotide small RNAs, previously implicated in transposable element silencing, is tissue-specific and much lower than in other plants. We further identify numerous long (>10,000 base pairs) introns, gene-like fragments, uncharacterized long non-coding RNAs and short RNAs. This opens up new genomic avenues for conifer forestry and breeding.

  • 4.
    Pesquet, Edouard
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Zhang, Bo
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Gorzsas, Andras
    Puhakainen, Tuula
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Serk, Henrik
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Escamez, Sacha
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Barbier, Odile
    Gerber, Lorenz
    Courtois-Moreau, Charleen
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Alatalo, Edward
    Paulin, Lars
    Kangasjärvi, Jaakko
    Sundberg, Björn
    Goffner, Deborah
    Tuominen, Hannele
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Non-Cell-Autonomous Postmortem Lignification of Tracheary Elements in Zinnia elegans2013In: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 25, no 4, p. 1314-1328Article in journal (Refereed)
    Abstract [en]

    Postmortem lignification of xylem tracheary elements (TEs) has been debated for decades. Here, we provide evidence in Zinnia elegans TE cell cultures, using pharmacological inhibitors and in intact Z. elegans plants using Fourier transform infrared microspectroscopy, that TE lignification occurs postmortem (i.e., after TE programmed cell death). In situ RT-PCR verified expression of the lignin monomer biosynthetic cinnamoyl CoA reductase and cinnamyl alcohol dehydrogenase in not only the lignifying TEs but also in the unlignified non-TE cells of Z. elegans TE cell cultures and in living, parenchymatic xylem cells that surround TEs in stems. These cells were also shown to have the capacity to synthesize and transport lignin monomers and reactive oxygen species to the cell walls of dead TEs. Differential gene expression analysis in Z. elegans TE cell cultures and concomitant functional analysis in Arabidopsis thaliana resulted in identification of several genes that were expressed in the non-TE cells and that affected lignin chemistry on the basis of pyrolysis-gas chromatography/mass spectrometry analysis. These data suggest that living, parenchymatic xylem cells contribute to TE lignification in a non-cellautonomous manner, thus enabling the postmortem lignification of TEs.

  • 5.
    Zhang, Bo
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Tremousaygue, Dominique
    Denancé, Nicolas
    van Esse, H. Peter
    Hörger, Anja C.
    Dabos, Patrick
    Goffner, Deborah
    Thomma, Bart P. H. J.
    van der Hoorn, Renier A. L.
    Tuominen, Hannele
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis2014In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 79, no 6, p. 1009-1019Article in journal (Refereed)
    Abstract [en]

    PIRIN (PRN) is a member of the functionally diverse cupin protein superfamily. There are four members of the Arabidopsis thaliana PRN family, but the roles of these proteins are largely unknown. Here we describe a function of the Arabidopsis PIRIN2 (PRN2) that is related to susceptibility to the bacterial plant pathogen Ralstonia solanacearum. Two prn2 mutant alleles displayed decreased disease development and bacterial growth in response to R. solanacearum infection. We elucidated the underlying molecular mechanism by analyzing PRN2 interactions with the papain-like cysteine proteases (PLCPs) XCP2, RD21A, and RD21B, all of which bound to PRN2 in yeast two-hybrid assays and in Arabidopsis protoplast co-immunoprecipitation assays. We show that XCP2 is stabilized by PRN2 through inhibition of its autolysis on the basis of PLCP activity profiling assays and enzymatic assays with recombinant protein. The stabilization of XCP2 by PRN2 was also confirmed in planta. Like prn2 mutants, an xcp2 single knockout mutant and xcp2 prn2 double knockout mutant displayed decreased susceptibility to R.solanacearum, suggesting that stabilization of XCP2 by PRN2 underlies susceptibility to R.solanacearum in Arabidopsis.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf