umu.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Regulatory pathways and virulence inhibition in Listeria monocytogenes2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Listeria monocytogenes is a rod-shaped Gram positive bacterium. It generally exist ubiquitously in nature, where it lives as a saprophyte. Occasionally it however enters the food chain, from where it can be ingested by humans and cause gastro-intestinal distress. In immunocompetent individuals L. monocytogenes is generally cleared within a couple of weeks, but in immunocompromised patients it can progress to listeriosis, a potentially life-threatening infection in the central nervous system. If the infected individual is pregnant, the bacteria can cross the placental barrier and infect the fetus, possibly leading to spontaneous abortion.

    The infectivity of L. monocytogenes requires a certain set of genes, and the majority of them is dependent on the transcriptional regulator PrfA. The expression and activity of PrfA is controlled at several levels, and has traditionally been viewed to be active at 37 °C (virulence conditions) where it bind as a homodimer to a “PrfA-box” and induces the expression of the downstream gene.

    One of these genes is ActA, which enables intracellular movement by recruiting an actin polymerizing protein complex. When studying the effects of a blue light receptor we surprisingly found an effect of ActA at non-virulent conditions, where it is required for the bacteria to properly react to light exposure.

    To further study the PrfA regulon we tested deletion mutants of several PrfA-regulated virulence genes in chicken embryo infection studies. Based on these studies we could conclude that the chicken embryo model is a viable complement to traditional murine models, especially when investigating non-traditional internalin pathogenicity pathways. We have also studied the effects of small molecule virulence inhibitors that, by acting on PrfA, can inhibit L. monocytogenes infectivity in cell cultures with concentrations in the low micro-molar range.

  • 2.
    Andersson, Christopher
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Gripenland, Jonas
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections2015In: Nature Protocols, ISSN 1754-2189, E-ISSN 1750-2799, Vol. 10, no 8, p. 1155-1164Article in journal (Refereed)
    Abstract [en]

    Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens. We provide a step-by-step protocol and figures and videos detailing the method, including egg handling, infection strategies, pathogenicity screening and isolation of infected organs. From the start of incubation of the fertilized eggs, the protocol takes <4 weeks to complete, with the infection part taking only 3 d. We discuss the appropriate controls to use and potential adjustments needed for adapting the protocol for other microbial pathogens.

  • 3.
    Good, James A. D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Hansen, Sabine
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wall, Jessica
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Krishnan, Syam
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Begum, Afshan
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Niemiec, Moritz Sebastian
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Vaitkevicius, Karolis
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Chorell, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sauer, Uwe H.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Sauer–Eriksson, A. Elisabeth
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Almqvist, Fredrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA2016In: Cell chemical biology, ISSN 2451-9448, Vol. 23, no 3, p. 404-414Article in journal (Refereed)
    Abstract [en]

    The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes infectivity by reducing the expression of virulence genes, without compromising bacterial growth. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds within a hydrophobic pocket, located between the C- and N-terminal domains of PrfA, and interacts with residues important for PrfA activation. This indicates that these inhibitors maintain the DNA-binding helix-turn-helix motif of PrfA in a disordered state, thereby preventing a PrfA:DNA interaction. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

  • 4.
    Gripenland, Jonas
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Evaluating the chicken embryo as a model for studying Listeria monocytogenes pathogenesis: a role for the PrfA pathwayManuscript (preprint) (Other academic)
  • 5.
    Gripenland, Jonas
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Exploring the chicken embryo as a possible model for studying Listeria monocytogenes pathogenicity2014In: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 4, article id 170Article in journal (Refereed)
    Abstract [en]

    Listeria monocytogenes is a bacterial pathogen capable of causing severe infections in humans, often with fatal outcomes. Many different animal models exist to study L. monocytogenes pathogenicity, and we have investigated the chicken embryo as an infection model: What are the benefits and possible drawbacks? We have compared a defined wild-type strain with its isogenic strains lacking well-characterized virulence factors. Our results show that wild-type L. monocytogenes, already at a relatively low infection dose (similar to 5 x 10(2) cfu), caused death of the chicken embryo within 36 h, in contrast to strains lacking the main transcriptional activator of virulence, PrfA, or the cytolysin LLO. Surprisingly, strains lacking the major adhesins InIA and InIB caused similar mortality as the wild-type strain. In conclusion, our results suggest that the chicken embryo is a practical model to study L. monocytogenes infections, especially when analyzing alternative virulence pathways independent of the InIA and InIB adhesins. However, the route of infection might be different from a human infection. The chicken embryo model and other Listeria infection models are discussed.

  • 6. Quereda, Juan J.
    et al.
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Cossart, Pascale
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Pizarro-Cerda, Javier
    Role in virulence of phospholipases, listeriolysin O and listeriolysin S from epidemic Listeria monocytogenes using the chicken embryo infection model2018In: Veterinary research (Print), ISSN 0928-4249, E-ISSN 1297-9716, Vol. 49, article id 13Article in journal (Refereed)
    Abstract [en]

    Most human listeriosis outbreaks are caused by Listeria monocytogenes evolutionary lineage I strains which possess four exotoxins: a phosphatidylinositol-specific phospholipase C (PlcA), a broad-range phospholipase C (PlcB), listeriolysin O (LLO) and listeriolysin S (LLS). The simultaneous contribution of these molecules to virulence has never been explored. Here, the importance of these four exotoxins of an epidemic lineage I L. monocytogenes strain (F2365) in virulence was assessed in chicken embryos infected in the allantoic cavity. We show that LLS does not play a role in virulence while LLO is required to infect and kill chicken embryos both in wild type transcriptional regulator of virulence PrfA -(PrfAWT) and constitutively active PrfA (PrfA*) backgrounds. We demonstrate that PlcA, a toxin previously considered as a minor virulence factor, played a major role in virulence in a PrfA* background. Interestingly, GFP transcriptional fusions show that the plcA promoter is less active than the hly promoter in vitro, explaining why the contribution of PlcA to virulence could be observed more importantly in a PrfA* background. Together, our results suggest that PlcA might play a more important role in the infectious lifecycle of L. monocytogenes than previously thought, explaining why all the strains of L. monocytogenes have conserved an intact copy of plcA in their genomes.

  • 7.
    Tiensuu, Teresa
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Ryden, Patrik
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Johansson, Jörgen
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes2013In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 87, no 4, p. 909-924Article in journal (Refereed)
    Abstract [en]

    Recently, several light receptors have been identified in non-phototrophic bacteria, but their physiological roles still remain rather elusive. Here we show that colonies of the saprophytic bacterium Listeria monocytogenes undergo synchronized multicellular behaviour on agar plates, in response to oscillating light/dark conditions, giving rise to alternating ring formation (opaque and translucent rings). On agar plates, bacteria from opaque rings survive increased levels of reactive oxygen species (ROS), as well as repeated cycles of light and dark, better than bacteria from translucent rings. The ring formation is strictly dependent on a blue-light receptor, Lmo0799, acting through the stress-sigma factor, sigma B. A transposon screening identified 48 mutants unable to form rings at alternating light conditions, with several of them showing a decreased sigma B activity/level. However, some of the tested mutants displayed a varied sigma B activity depending on which of the two stress conditions tested (light or H2O2 exposure). Intriguingly, the transcriptional regulator PrfA and the virulence factor ActA were shown to be required for ring formation by a mechanism involving activation of sigma B. All in all, this suggests a distinct pathway for Lmo0799 that converge into a common signalling pathway for sigma B activation. Our results show that night and day cycles co-ordinate a reversible differentiation of a L.monocytogenes colony at room temperature, by a process synchronized by a blue-light receptor and sigma B.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf