umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Sheng, Ming
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Regulation of energy balance in Caenorhabditis elegans 2015Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Obesity is a medical condition in which excess body fat has been accumulated. It is most commonly caused by imbalance between energy intake and energy expenditure (lack of physical activity and lower metabolic rate, etc.). The control of energy metabolism involves multiple tissues and signalling pathways and there is a great need for further understanding of these different interactions.

    In this study, I use Caenorhabditis elegans to study these complex pathways at the level of a whole organism. The downstream target of mTOR, p70 S6 kinase (S6K), has been implicated in the phosphorylation of multiple substrates and the regulation of growth and metabolism. In this study the worm homolog of S6K, rsks-1, found to be important for fat metabolism. Previous work in our lab found that RSKS-1::GFP is expressed at high levels in a set of sensory neurons and upregulated in ASJ, ASE and BAG sensory neurons in starved worms or mutants with low insulin activity. In this study, I found that the upregulation of rsks-1 expression was affected by serotonin, but not by the other neurotransmitters. Combined with the result that rsks-1 is required for the expression of TGFβ and insulin in ASI, rsks-1 may control dietary sensing by affecting insulin and TGFβ signalling within nervous system. Quantification of fat accumulation by TLC/GC revealed that in comparison to wild type worms, rsks-1 mutants have more than two-fold higher levels of triglycerides. This was confirmed by FT-IR microspectroscopy analysis. rsks-1 mutants also contain disproportionately high levels of C16:1n9 and C18:1n9 lipids compared with wild type worms. Genetic analysis has shown that rsks-1 acts either downstream of, or in parallel to the insulin and TGFβ pathways to affect fat levels. My studies showed that rsks-1 affects fat metabolism by influencing mRNA levels of genes encoding proteins in the β-oxidation pathway. Combined with defects in dietary sensing, fatty acid absorption, fertility and mitochondria function, the loss of rsks-1 activity induced much more energy storage than wild type by making a profound metabolic shift. These results are consistent with the metabolomics data analysis. Tissue specific RNAi showed that rsks-1 was required in many different tissues to regulate fat metabolism. Taken together, it can be concluded that RSKS-1 activity is needed for co-ordination of metabolic states in C. elegans. In order to understand more about the physiology behind fat accumulation, I analysed a mutant, aex-5, that has significantly lowered lipid levels. I found that this defect is associated with a significant reduction in the rate at which dietary fatty acids are taken up from the intestinal lumen. The aex-5 gene, which encodes a Kex2/subtilisin-family, Ca2+-sensitive proprotein convertase, is required for a discrete step in an ultraradian rhythmic phenomenon called the defecation motor program (DMP). Combined with other results, we conclude that aex-5 and other defecation genes may affect fat uptake by promoting the correct distribution of acidity within the intestinal lumen.

    This dissertation also described how to use Fourier transform infrared (FT-IR) microspectroscopy to detect lipids, proteins and carbohydrates directly in single worm. In conclusion, in this thesis I have uncovered several components that play roles in dietary sensing, fatty acid synthesis, adiposity regulation and fatty acid absorption in C. elegans.   

  • 2.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Friberg, Josefin
    Lundstedt, Staffan
    McQuary, Philip
    Selstam, Eva
    Hansen, Malene
    Tuck, Simon
    Analysis of C. elegans rsks-1 mutants reveals a trade off between lipid accumulation and germ-line stem cell proliferationManuskript (preprint) (Övrigt vetenskapligt)
  • 3.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Friberg, Josefin
    Tuck, Simon
    The function and regulation of RSKS-1 p70 S6 kinase in C. elegans sensory neurons controlling the dauer decisionManuskript (preprint) (Övrigt vetenskapligt)
  • 4.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Gorzsás, András
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms2016Ingår i: Worm, E-ISSN 2162-4054, Vol. 5, nr 1, artikel-id e1132978Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  • 5.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hosseinzadeh, Ava
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Muralidharan, Somsundar Veppil
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Gaur, Rahul
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Selstam, Eva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Aberrant Fat Metabolism in Caenorhabditis elegans Mutants with Defects in the Defecation Motor Program2015Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, nr 4, artikel-id e0124515Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisinfamily, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steadystate levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.

1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf