umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 30 av 30
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Arkblad, Eva L
    et al.
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Pestov, Nikolay B
    Dmitriev, Ruslan I
    Kostina, Maria B
    Stenvall, Jörgen
    Tranberg, Mattias
    Rydström, Jan
    A Caenorhabditis elegans mutant lacking functional nicotinamide nucleotide transhydrogenase displays increased sensitivity to oxidative stress.2005Ingår i: Free Radic Biol Med, ISSN 0891-5849, Vol. 38, nr 11, s. 1518-25Artikel i tidskrift (Refereegranskat)
  • 2.
    Chen, Changchun
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Byström, Anders S
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants2009Ingår i: PLoS genetics, ISSN 1553-7404, Vol. 5, nr 7, s. e1000561-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Elongator is a six subunit protein complex, conserved from yeast to humans. Mutations in the human Elongator homologue, hELP1, are associated with the neurological disease familial dysautonomia. However, how Elongator functions in metazoans, and how the human mutations affect neural functions is incompletely understood. Here we show that in Caenorhabditis elegans, ELPC-1 and ELPC-3, components of the Elongator complex, are required for the formation of the 5-carbamoylmethyl and 5-methylcarboxymethyl side chains of wobble uridines in tRNA. The lack of these modifications leads to defects in translation in C. elegans. ELPC-1::GFP and ELPC-3::GFP reporters are strongly expressed in a subset of chemosensory neurons required for salt chemotaxis learning. elpc-1 or elpc-3 gene inactivation causes a defect in this process, associated with a posttranscriptional reduction of neuropeptide and a decreased accumulation of acetylcholine in the synaptic cleft. elpc-1 and elpc-3 mutations are synthetic lethal together with those in tuc-1, which is required for thiolation of tRNAs having the 5'methylcarboxymethyl side chain. elpc-1; tuc-1 and elpc-3; tuc-1 double mutants display developmental defects. Our results suggest that, by its effect on tRNA modification, Elongator promotes both neural function and development.

  • 3. Chotard, Laëtitia
    et al.
    Mishra, Ashwini K
    Sylvain, Marc-André
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Lambright, David G
    Rocheleau, Christian E
    TBC-2 regulates RAB-5/RAB-7-mediated endosomal trafficking in Caenorhabditis elegans2010Ingår i: Molecular Biology of the Cell, ISSN 1059-1524, E-ISSN 1939-4586, Vol. 21, nr 13, s. 2285-2296Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    During endosome maturation the early endosomal Rab5 GTPase is replaced with the late endosomal Rab7 GTPase. It has been proposed that active Rab5 can recruit and activate Rab7, which in turn could inactivate and remove Rab5. However, many of the Rab5 and Rab7 regulators that mediate endosome maturation are not known. Here, we identify Caenorhabditis elegans TBC-2, a conserved putative Rab GTPase-activating protein (GAP), as a regulator of endosome to lysosome trafficking in several tissues. We show that tbc-2 mutant animals accumulate enormous RAB-7-positive late endosomes in the intestine containing refractile material. RAB-5, RAB-7, and components of the homotypic fusion and vacuole protein sorting (HOPS) complex, a RAB-7 effector/putative guanine nucleotide exchange factor (GEF), are required for the tbc-2(-) intestinal phenotype. Expression of activated RAB-5 Q78L in the intestine phenocopies the tbc-2(-) large late endosome phenotype in a RAB-7 and HOPS complex-dependent manner. TBC-2 requires the catalytic arginine-finger for function in vivo and displays the strongest GAP activity on RAB-5 in vitro. However, TBC-2 colocalizes primarily with RAB-7 on late endosomes and requires RAB-7 for membrane localization. Our data suggest that TBC-2 functions on late endosomes to inactivate RAB-5 during endosome maturation.

  • 4.
    Dongre, Mitesh
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Singh, Bhupender
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Aung, Kyaw Min
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Larsson, Per
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Miftakhova, Regina R.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Askarian, Fatemeh
    Johannessen, Mona
    von Hofsten, Jonas
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Persson, Jenny L.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Erhardt, Marc
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Flagella-mediated secretion of a novel Vibrio cholerae cytotoxin affecting both vertebrate and invertebrate hosts2018Ingår i: Communications Biology, ISSN 2399-3642, Vol. 1, artikel-id 59Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using Caenorhabditis elegans as an infection host model for Vibrio cholerae predator interactions, we discovered a bacterial cytotoxin, MakA, whose function as a virulence factor relies on secretion via the flagellum channel in a proton motive force-dependent manner. The MakA protein is expressed from the polycistronic makDCBA (motility-associated killing factor) operon. Bacteria expressing makDCBA induced dramatic changes in intestinal morphology leading to a defecation defect, starvation and death in C. elegans. The Mak proteins also promoted V. cholerae colonization of the zebrafish gut causing lethal infection. A structural model of purified MakA at 1.9 Å resolution indicated similarities to members of a superfamily of bacterial toxins with unknown biological roles. Our findings reveal an unrecognized role for V. cholerae flagella in cytotoxin export that may contribute both to environmental spread of the bacteria by promoting survival and proliferation in encounters with predators, and to pathophysiological effects during infections.

  • 5. Elle, Ida C
    et al.
    Simonsen, Karina T
    Olsen, Louise C B
    Birck, Pernille K
    Ehmsen, Sidse
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Le, Thuc T
    Færgeman, Nils J
    Tissue- and paralogue-specific functions of acyl-CoA-binding proteins in lipid metabolism in Caenorhabditis elegans2011Ingår i: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 437, nr 2, s. 231-241Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    ACBP (acyl-CoA-binding protein) is a small primarily cytosolic protein that binds acyl-CoA esters with high specificity and affinity. ACBP has been identified in all eukaryotic species, indicating that it performs a basal cellular function. However, differential tissue expression and the existence of several ACBP paralogues in many eukaryotic species indicate that these proteins serve distinct functions. The nematode Caenorhabditis elegans expresses seven ACBPs: four basal forms and three ACBP domain proteins. We find that each of these paralogues is capable of complementing the growth of ACBP-deficient yeast cells, and that they exhibit distinct temporal and tissue expression patterns in C. elegans. We have obtained loss-of-function mutants for six of these forms. All single mutants display relatively subtle phenotypes; however, we find that functional loss of ACBP-1 leads to reduced triacylglycerol (triglyceride) levels and aberrant lipid droplet morphology and number in the intestine. We also show that worms lacking ACBP-2 show a severe decrease in the β-oxidation of unsaturated fatty acids. A quadruple mutant, lacking all basal ACBPs, is slightly developmentally delayed, displays abnormal intestinal lipid storage, and increased β-oxidation. Collectively, the present results suggest that each of the ACBP paralogues serves a distinct function in C. elegans.

  • 6. Furuta, T
    et al.
    Tuck, S
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Kirchner, J
    Koch, B
    Auty, R
    Kitagawa, R
    Rose, A M
    Greenstein, D
    EMB-30: an APC4 homologue required for metaphase-to-anaphase transitions during meiosis and mitosis in Caenorhabditis elegans.2000Ingår i: Mol Biol Cell, ISSN 1059-1524, Vol. 11, nr 4, s. 1401-19Artikel i tidskrift (Refereegranskat)
  • 7. Gaur, Rahul
    et al.
    Björk, Glenn
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Tuck, Simon
    Umeå centrum för molekylär patogenes (UCMP).
    Varshney, Umesh
    Diet-dependent depletion of queuosine in tRNAs in Caenorhabditis elegans does not lead to a developmental block.2007Ingår i: J Biosci, ISSN 0250-5991, Vol. 32, nr 4, s. 747-54Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Queuosine (Q), a hypermodified nucleoside,occurs at the wobble position of transfer RNAs (tRNAs)with GUN anticodons. In eubacteria, absence of Q affects messenger RNA (mRNA) translation and reduces the virulence of certain pathogenic strains. In animal cells,changes in the abundance of Q have been shown to correlate with diverse phenomena including stress tolerance, cell proliferation and tumour growth but the function of Q in animals is poorly understood. Animals are thought to obtain Q (or its analogues) as a micronutrient from dietary sources such as gut micro flora. However,the difficulty of maintaining animals under bacteria-free conditions on Q-deficient diets has severely hampered the study of Q metabolism and function in animals. In this study,we show that as in higher animals, tRNAs in the nematode Caenorhabditis elegans are modified by Q and its sugar derivatives. When the worms were fed on Q-deficient Escherichia coli, Q modification was absent from the worm tRNAs suggesting that C.elegans lacks a de novo pathway of Q biosynthesis. The inherent advantages of C.elegans as a model organism, and the simplicity of conferring a Q-deficient phenotype on it make it an ideal system to investigate the function of Q modification in tRNA.

  • 8.
    Kao, Gautam
    et al.
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten). Umeå universitet, Medicinsk fakultet, Kirurgisk och perioperativ vetenskap, Kirurgi.
    Nordenson, Cecilia
    Umeå universitet, Medicinsk fakultet, Kirurgisk och perioperativ vetenskap, Kirurgi.
    Still, Maria
    Umeå universitet, Medicinsk fakultet, Kirurgisk och perioperativ vetenskap.
    Rönnlund, Agneta
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Tuck, Simon
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Naredi, Peter
    Umeå universitet, Medicinsk fakultet, Kirurgisk och perioperativ vetenskap, Kirurgi.
    ASNA-1 positively regulates insulin secretion in C. elegans and mammalian cells.2007Ingår i: Cell, ISSN 0092-8674, Vol. 128, nr 3, s. 577-87Artikel i tidskrift (Refereegranskat)
  • 9.
    Kao, Gautam
    et al.
    Department of Genetics, University of Pennsylvania, Philadelphia, USA.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Baillie, David
    Department of Biological Sciences, Simon Fraser University, Canada.
    Sundaram, Meera V.
    Department of Genetics, University of Pennsylvania, Philadelphia, USA.
    C. elegans SUR-6/PR55 cooperates with LET-92/protein phosphatase 2A and promotes Raf activity independently of inhibitory Akt phosphorylation sites2004Ingår i: Development, ISSN 0950-1991, E-ISSN 1477-9129, Vol. 131, nr 4, s. 755-765Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Protein phosphatase 2A (PP2A) can both positively and negatively influence the Ras/Raf/MEK/ERK signaling pathway, but its relevant substrates are largely unknown. In C. elegans, the PR55/B regulatory subunit of PP2A, which is encoded by sur-6, positively regulates Ras-mediated vulval induction and acts at a step between Ras and Raf. We show that the catalytic subunit (C) of PP2A, which is encoded by let-92, also positively regulates vulval induction. Therefore SUR-6/PR55 and LET-92/PP2A-C probably act together to dephosphorylate a Ras pathway substrate. PP2A has been proposed to activate the Raf kinase by removing inhibitory phosphates from Ser259 from Raf-1 or from equivalent Akt phosphorylation sites in other Raf family members. However, we find that mutant forms ofC. elegans LIN-45 RAF that lack these sites still require sur-6. Therefore, SUR-6 must influence Raf activity via a different mechanism. SUR-6 and KSR (kinase suppressor of Ras) function at a similar step in Raf activation but our genetic analysis suggests that KSR activity is intact in sur-6 mutants. We identify the kinase PAR-1 as a negative regulator of vulval induction and show that it acts in opposition to SUR-6 and KSR-1. In addition to their roles in Ras signaling, SUR-6/PR55 and LET-92/PP2A-C cooperate to control mitotic progression during early embryogenesis.

  • 10. Korta, Dorota Z
    et al.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hubbard, E Jane Albert
    S6K links cell fate, cell cycle and nutrient response in C. elegans germline stem/progenitor cells.2012Ingår i: Development, ISSN 0950-1991, E-ISSN 1477-9129, Vol. 139, nr 5, s. 859-870Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Coupling of stem/progenitor cell proliferation and differentiation to organismal physiological demands ensures the proper growth and homeostasis of tissues. However, in vivo mechanisms underlying this control are poorly characterized. We investigated the role of ribosomal protein S6 kinase (S6K) at the intersection of nutrition and the establishment of a stem/progenitor cell population using the C. elegans germ line as a model. We find that rsks-1 (which encodes the worm homolog of mammalian p70S6K) is required germline-autonomously for proper establishment of the germline progenitor pool. In the germ line, rsks-1 promotes cell cycle progression and inhibits larval progenitor differentiation, promotes growth of adult tumors and requires a conserved TOR phosphorylation site. Loss of rsks-1 and ife-1 (eIF4E) together reduces the germline progenitor pool more severely than either single mutant and similarly to reducing the activity of let-363 (TOR) or daf-15 (RAPTOR). Moreover, rsks-1 acts in parallel with the glp-1 (Notch) and daf-2 (insulin-IGF receptor) pathways, and does not share the same genetic dependencies with its role in lifespan control. We show that overall dietary restriction and amino acid deprivation cause germline defects similar to a subset of rsks-1 mutant phenotypes. Consistent with a link between diet and germline proliferation via rsks-1, loss of rsks-1 renders the germ line largely insensitive to the effects of dietary restriction. Our studies establish the C. elegans germ line as an in vivo model to understand TOR-S6K signaling in proliferation and differentiation and suggest that this pathway is a key nutrient-responsive regulator of germline progenitors.

  • 11.
    Larsen, Morten K
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Faergeman, Nils J
    Knudsen, Jens
    MAA-1, a novel acyl-CoA-binding protein involved in endosomal vesicle transport in Caenorhabditis elegans.2006Ingår i: Mol Biol Cell, ISSN 1059-1524, Vol. 17, nr 10, s. 4318-29Artikel i tidskrift (Refereegranskat)
  • 12. Navarro-Gonzalez, Carmen
    et al.
    Moukadiri, Ismail
    Villarroya, Magda
    Lopez-Pascual, Ernesto
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Eugenia Armengod, M.
    Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses2017Ingår i: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, nr 7, artikel-id e1006921Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.

  • 13.
    Nilsson, L
    et al.
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Li, X
    Tiensuu, T
    Auty, R
    Greenwald, I
    Tuck, S
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Caenorhabditis elegans lin-25: cellular focus, protein expression and requirement for sur-2 during induction of vulval fates.1998Ingår i: Development, ISSN 0950-1991, Vol. 125, nr 23, s. 4809-19Artikel i tidskrift (Refereegranskat)
  • 14. Nilsson, L
    et al.
    Tiensuu, T
    Tuck, S
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Caenorhabditis elegans lin-25: a study of its role in multiple cell fate specification events involving Ras and the identification and characterization of evolutionarily conserved domains.2000Ingår i: Genetics, ISSN 0016-6731, Vol. 156, nr 3, s. 1083-96Artikel i tidskrift (Refereegranskat)
  • 15.
    Nilsson, Lars
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Conradt, Barbara
    Ruaud, Anne-Françoise
    Chen, Carlos Chih-Hsiung
    Hatzold, Julia
    Bessereau, Jean-Louis
    Grant, Barth
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Caenorhabditis elegans num-1 negatively regulates endocytic recycling2008Ingår i: Genetics, Vol. 179, s. 375-387Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Much of the material taken into cells by endocytosis is rapidly returned to the plasma membrane by the endocytic recycling pathway. Although recycling is vital for the correct localization of cell membrane receptors and lipids, the molecular mechanisms that regulate recycling are only partially understood. Here we show that in C. elegans, endocytic recycling is inhibited by NUM-1A, the nematode Numb homologue. NUM-1A::GFP fusion protein is localized to the baso-lateral surfaces of many polarized epithelial cells including the hypodermis and the intestine. We show that increased NUM-1A levels cause morphological defects in these cells similar to those caused by loss-of-function mutations in rme-1, a positive regulator of recycling both in C. elegans and mammals. We describe the isolation of worms lacking num-1A activity and show that, consistent with a model in which NUM-1A negatively regulates recycling in the intestine, loss of num-1A function bypasses the requirement for RME-1. Genetic epistasis analysis with rab-10, which is required at an early part of the recycling pathway, suggests that loss of num-1A function does not affect the uptake of material by endocytosis but rather inhibits baso-lateral recycling downstream of rab-10.

  • 16.
    Nilsson, Lars
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Jonsson, Eva
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Caenorhabditis elegans Numb Inhibits Endocytic Recycling by Binding TAT-1 Aminophospholipid Translocase2011Ingår i: Traffic: the International Journal of Intracellular Transport, ISSN 1398-9219, E-ISSN 1600-0854, Vol. 12, nr 12, s. 1839-1849Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Numb regulates endocytosis in many metazoans, but the mechanism by which it functions is not completely understood. Here we report that the Caenorhabditis ele-gans Numb ortholog, NUM-1A, a regulator of endocytic recycling, binds the C isoform of transbilayer amphipath transporter-1 (TAT-1), a P4 family adenosine triphosphatase and putative aminophospholipid translocase that is required for proper endocytic trafficking. We demonstrate that TAT-1 is differentially spliced during development and that TAT-1C-specific splicing occurs in the intestine where NUM-1A is known to function. NUM-1A and TAT-1C colocalize in vivo. We have mapped the binding site to an NXXF motif in TAT-1C. This motif is not required for TAT-1C function but is required for NUM-1A's ability to inhibit recycling. We demonstrate that num-1A and tat-1 defects are both suppressed by the loss of the activity of PSSY-1, a phosphatidylserine (PS) synthase. PS is mislocalized in intestinal cells with defects in tat-1 or num-1A function. We propose that NUM-1A inhibits recycling by inhibiting TAT-1C's ability to translocate PS across the membranes of recycling endosomes.

  • 17.
    Nyström, Josefin
    et al.
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Shen, Zai-Zhong
    Aili, Margareta
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Flemming, Anthony J
    Leroi, Armand
    Tuck, Simon
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Increased or decreased levels of Caenorhabditis elegans lon-3, a gene encoding a collagen, cause reciprocal changes in body length.2002Ingår i: Genetics, ISSN 0016-6731, E-ISSN 1943-2631, Vol. 161, nr 1, s. 83-97Artikel i tidskrift (Refereegranskat)
  • 18. Rocheleau, Christian E
    et al.
    Rönnlund, Agneta
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Sundaram, Meera V
    Caenorhabditis elegans CNK-1 promotes Raf activation but is not essential for Ras/Raf signaling.2005Ingår i: Proc Natl Acad Sci U S A, ISSN 0027-8424, Vol. 102, nr 33, s. 11757-62Artikel i tidskrift (Refereegranskat)
  • 19. Rohn, Isabelle
    et al.
    Marschall, Talke Anu
    Kroepfl, Nina
    Jensen, Kenneth Bendix
    Aschner, Michael
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Kuehnelt, Doris
    Schwerdtle, Tanja
    Bornhorst, Julia
    Selenium species-dependent toxicity, bioavailability and metabolic transformations in Caenorhabditis elegans2018Ingår i: Metallomics, ISSN 1756-5901, E-ISSN 1756-591X, Vol. 10, nr 6, s. 818-827Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The essential micronutrient selenium (Se) is required for various systemic functions, but its beneficial range is narrow and overexposure may result in adverse health effects. Additionally, the chemical form of the ingested selenium contributes crucially to its health effects. While small Se species play a major role in Se metabolism, their toxicological effects, bioavailability and metabolic transformations following elevated uptake are poorly understood. Utilizing the tractable invertebrate Caenorhabditis elegans allowed for an alternative approach to study species-specific characteristics of organic and inorganic Se forms in vivo, revealing remarkable species-dependent differences in the toxicity and bioavailability of selenite, selenomethionine (SeMet) and Se-methylselenocysteine (MeSeCys). An inverse relationship was found between toxicity and bioavailability of the Se species, with the organic species displaying a higher bioavailability than the inorganic form, yet being less toxic. Quantitative Se speciation analysis with HPLC/mass spectrometry revealed a partial metabolism of SeMet and MeSeCys. In SeMet exposed worms, identified metabolites were Se-adenosylselenomethionine (AdoSeMet) and Se-adenosylselenohomocysteine (AdoSeHcy), while worms exposed to MeSeCys produced Se-methylselenoglutathione (MeSeGSH) and -glutamyl-MeSeCys (-Glu-MeSeCys). Moreover, the possible role of the sole selenoprotein in the nematode, thioredoxin reductase-1 (TrxR-1), was studied comparing wildtype and trxr-1 deletion mutants. Although a lower basal Se level was detected in trxr-1 mutants, Se toxicity and bioavailability following acute exposure was indistinguishable from wildtype worms. Altogether, the current study demonstrates the suitability of C. elegans as a model for Se species dependent toxicity and metabolism, while further research is needed to elucidate TrxR-1 function in the nematode.

  • 20. Rohn, Isabelle
    et al.
    Raschke, Stefanie
    Aschner, Michael
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Kuehnelt, Doris
    Kipp, Anna
    Schwerdtle, Tanja
    Bornhorst, Julia
    Treatment of Caenorhabditis elegans with Small Selenium Species Enhances Antioxidant Defense Systems2019Ingår i: Molecular Nutrition & Food Research, ISSN 1613-4125, E-ISSN 1613-4133, Vol. 63, nr 9Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake.

  • 21. Ruaud, Anne-Françoise
    et al.
    Nilsson, Lars
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM). Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Richard, Fabrice
    Krog Larsen, Morten
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Bessereau, Jean-Louis
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    The C. elegans P4-ATPase TAT-1 regulates Lysosome Biogenesis and Endocytosis2009Ingår i: Traffic: the International Journal of Intracellular Transport, ISSN 1398-9219, E-ISSN 1600-0854, Vol. 10, nr 1, s. 88-100Artikel i tidskrift (Refereegranskat)
  • 22. Schumacher, B
    et al.
    Schertel, C
    Wittenburg, N
    Tuck, S
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    Mitani, S
    Gartner, A
    Conradt, B
    Shaham, S
    C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage.2005Ingår i: Cell Death Differ, ISSN 1350-9047, Vol. 12, nr 2, s. 153-61Artikel i tidskrift (Refereegranskat)
  • 23.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Gorzsás, András
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Fourier transform infrared microspectroscopy for the analysis of the biochemical composition of C. elegans worms2016Ingår i: Worm, E-ISSN 2162-4054, Vol. 5, nr 1, artikel-id e1132978Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Changes in intermediary metabolism have profound effects on many aspects of C. elegans biology including growth, development and behavior. However, many traditional biochemical techniques for analyzing chemical composition require relatively large amounts of starting material precluding the analysis of mutants that cannot be grown in large amounts as homozygotes. Here we describe a technique for detecting changes in the chemical compositions of C. elegans worms by Fourier transform infrared microspectroscopy. We demonstrate that the technique can be used to detect changes in the relative levels of carbohydrates, proteins and lipids in one and the same worm. We suggest that Fourier transform infrared microspectroscopy represents a useful addition to the arsenal of techniques for metabolic studies of C. elegans worms.

  • 24.
    Sheng, Ming
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Hosseinzadeh, Ava
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Muralidharan, Somsundar Veppil
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Gaur, Rahul
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Selstam, Eva
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Aberrant Fat Metabolism in Caenorhabditis elegans Mutants with Defects in the Defecation Motor Program2015Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 10, nr 4, artikel-id e0124515Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The molecular mechanisms by which dietary fatty acids are absorbed by the intestine, and the way in which the process is regulated are poorly understood. In a genetic screen for mutations affecting fat accumulation in the intestine of Caenorhabditis elegans, nematode worms, we have isolated mutations in the aex-5 gene, which encodes a Kex2/subtilisinfamily, Ca2+-sensitive proprotein convertase known to be required for maturation of certain neuropeptides, and for a discrete step in an ultradian rhythmic phenomenon called the defecation motor program. We demonstrate that aex-5 mutants have markedly lower steadystate levels of fat in the intestine, and that this defect is associated with a significant reduction in the rate at which labeled fatty acid derivatives are taken up from the intestinal lumen. Other mutations affecting the defecation motor program also affect steady-state levels of triglycerides, suggesting that the program is required per se for the proper accumulation of neutral lipids. Our results suggest that an important function of the defecation motor program in C. elegans is to promote the uptake of an important class of dietary nutrients. They also imply that modulation of the program might be one way in which worms adjust nutrient uptake in response to altered metabolic status.

  • 25.
    Stenvall, Jörgen
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Fierro-González, Juan Carlos
    Swoboda, Peter
    Saamarthy, Karunakar
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Cheng, Qing
    Cacho-Valadez, Briseida
    Arnér, Elias S J
    Persson, Olof P
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Miranda-Vizuete, Antonio
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Selenoprotein TRXR-1 and GSR-1 are essential for removal of old cuticle during molting in Caenorhabditis elegans2011Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, nr 3, s. 1064-1069Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Selenoproteins, in particular thioredoxin reductase, have been implicated in countering oxidative damage occurring during aging but the molecular functions of these proteins have not been extensively investigated in different animal models. Here we demonstrate that TRXR-1 thioredoxin reductase, the sole selenoprotein in Caenorhabditis elegans, does not protect against acute oxidative stress but functions instead together with GSR-1 glutathione reductase to promote the removal of old cuticle during molting. We show that the oxidation state of disulfide groups in the cuticle is tightly regulated during the molting cycle, and that when trxr-1 and gsr-1 function is reduced, disulfide groups in the cuticle remain oxidized. A selenocysteine-to-cysteine TRXR-1 mutant fails to rescue molting defects. Furthermore, worms lacking SELB-1, the C. elegans homolog of Escherichia coli SelB or mammalian EFsec, a translation elongation factor known to be specific for selenocysteine in E. coli, fail to incorporate selenocysteine, and display the same phenotype as those lacking trxr-1. Thus, TRXR-1 function in the reduction of old cuticle is strictly selenocysteine dependent in the nematode. Exogenously supplied reduced glutathione reduces disulfide groups in the cuticle and induces apolysis, the separation of old and new cuticle, strongly suggesting that molting involves the regulated reduction of cuticle components driven by TRXR-1 and GSR-1. Using dauer larvae, we demonstrate that aged worms have a decreased capacity to molt, and decreased expression of GSR-1. Together, our results establish a function for the selenoprotein TRXR-1 and GSR-1 in the removal of old cuticle from the surface of epidermal cells.

  • 26. Tiensuu, Teresa
    et al.
    Larsen, Morten Krog
    Vernersson, Emma
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Umeå centrum för molekylär patogenes (UCMP).
    lin-1 has both positive and negative functions in specifying multiple cell fates induced by Ras/MAP kinase signaling in C. elegans.2005Ingår i: Dev Biol, ISSN 0012-1606, Vol. 286, nr 1, s. 338-51Artikel i tidskrift (Refereegranskat)
  • 27.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    Extracellular vesicles: budding regulated by a phosphatidylethanolamine translocase2011Ingår i: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 21, nr 24, s. R988-R990Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Recent work on a Caenorhabditis elegans transmembrane ATPase reveals a central role for the aminophospholipid phosphatidylethanolamine in the production of a class of extracellular vesicles

  • 28.
    Tuck, Simon
    Umeå universitet, Medicinska fakulteten, Umeå centrum för molekylär medicin (UCMM).
    The control of cell growth and body size in Caenorhabditis elegans2014Ingår i: Experimental Cell Research, ISSN 0014-4827, E-ISSN 1090-2422, Vol. 321, nr 1, s. 71-76Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    One of the most important ways in which animal species vary is in their size. Individuals of the largest animal ever thought to have lived, the blue whale (Balaenoptera musculus), can reach a weight of 190 t and a length of over 30 m. At the other extreme, among the smallest multicellular animals are males of the parasitic wasp, Dicopomorpha echmepterygis, which even as adults are just 140 mu m in length. In terms of volume, these species differ by more than 14 orders of magnitude. Since size has such profound effects on an organism's ecology, anatomy and physiology, an important task for evolutionary biology and ecology is to account for why organisms grow to their characteristic sizes. Equally, a full description of an organism's development must include an explanation of how its growth and body size are regulated. Here I review research on how these processes are controlled in the nematode, Caenorhabditis elegans. Analyses of small and long mutants have revealed that in the worm, DBL-1, a ligand in the TGF beta superfamily family, promotes growth in a dose-dependent manner. DBL-1 signaling affects body size by stimulating the growth of syncytial hypodermal cells rather than controlling cell division. Signals from chemosensory neurons and from the gonad also modulate body size, in part, independently of DBL-1-mediated signaling. Organismal size and morphology is heavily influenced by the cuticle, which acts as the exoskeleton. Finally, I summarize research on several genes that appear to regulate body size by cell autonomously regulating cell growth throughout the worm. 

  • 29.
    Vaitkevicius, Karolis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Lindmark, Barbro
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ou, Gangwei
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Song, Tianyan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Toma, Claudia
    Division of Bacterial Pathogenesis, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
    Iwanaga, Masaaki
    Division of Bacterial Pathogenesis, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.
    Zhu, Jun
    Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia.
    Andersson, Agneta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för ekologi, miljö och geovetenskap. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå marina forskningscentrum (UMF).
    Hammarström, Marie-Louise
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Tuck, Simon
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå centrum för molekylär patogenes (UCMP).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    A Vibrio cholerae protease needed for killing of Caenorhabditis elegans has a role in protection from natural predator grazing2006Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 103, nr 24, s. 9280-9285Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Vibrio cholerae is the causal bacterium of the diarrheal disease cholera, and its growth and survival are thought to be curtailed by bacteriovorous predators, e.g., ciliates and flagellates. We explored Caenorhabditis elegans as a test organism after finding that V. cholerae can cause lethal infection of this nematode. By reverse genetics we identified an extracellular protease, the previously uncharacterized PrtV protein, as being necessary for killing. The killing effect is associated with the colonization of bacteria within the Caenorhabditis elegans intestine. We also show that PrtV is essential for V. cholerae in the bacterial survival from grazing by the flagellate Cafeteria roenbergensis and the ciliate Tetrahymena pyriformis. The PrtV protein appears to have an indirect role in the interaction of V. cholerae with mammalian host cells as judged from tests with tight monolayers of human intestinal epithelial cells. Our results demonstrate a key role for PrtV in V. cholerae interaction with grazing predators, and we establish Caenorhabditis elegans as a convenient organism for identification of V. cholerae factors involved in host interactions and environmental persistence.

  • 30. Yochem, J
    et al.
    Tuck, S
    Umeå universitet, Medicinsk fakultet, Umeå centrum för molekylär patogenes (UCMP) (Medicinska fakulteten).
    Greenwald, I
    Han, M
    A gp330/megalin-related protein is required in the major epidermis of Caenorhabditis elegans for completion of molting.1999Ingår i: Development, ISSN 0950-1991, Vol. 126, nr 3, s. 597-606Artikel i tidskrift (Refereegranskat)
1 - 30 av 30
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf