umu.sePublications
Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Akimoto, Chizuru
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Forsgren, Lars
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Linder, Jan
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Birve, Anna
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Backlund, Irene
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience.
    Andersson, Jörgen
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Nilsson, Ann-Charloth
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Alstermark, Helena
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Andersen, Peter M
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    No GGGGCC-hexanucleotide repeat expansion in C9ORF72 in parkinsonism patients in Sweden2013In: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, ISSN 2167-8421, Vol. 14, no 1, p. 26-29Article in journal (Refereed)
    Abstract [en]

    An intronic GGGGCC-hexanucleotide repeat expansion in C9ORF72 was recently identified as a major cause of amyotrophic lateral sclerosis and frontotemporal dementia. Some amyotrophic lateral sclerosis patients have signs of parkinsonism, and many parkinsonism patients develop dementia. In this study we examined if the hexanucleotide repeat expansion was present in parkinsonism patients, to clarify if there could be a relationship between the repeat expansion and disease. We studied the size of the hexanucleotide repeat expansion in a well defined population-based cohort of 135 Parkinson's disease patients and 39 patients with atypical parkinsonism and compared with 645 Swedish control subjects. We found no correlation between Parkinson's disease or atypical parkinsonism and the size of the GGGGCC repeat expansion in C9ORF72. In conclusion, this GGGGCC-repeat expansion in C9ORF72 is not a cause of parkinsonism in the Swedish population.

  • 2.
    Akimoto, Chizuru
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Volk, Alexander E.
    van Blitterswijk, Marka
    Van den Broeck, Marleen
    Leblond, Claire S.
    Lumbroso, Serge
    Camu, William
    Neitzel, Birgit
    Onodera, Osamu
    van Rheenen, Wouter
    Pinto, Susana
    Weber, Markus
    Smith, Bradley
    Proven, Melanie
    Talbot, Kevin
    Keagle, Pamela
    Chesi, Alessandra
    Ratti, Antonia
    van der Zee, Julie
    Alstermark, Helena
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Birve, Anna
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Calini, Daniela
    Nordin, Angelica
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Tradowsky, Daniela C.
    Just, Walter
    Daoud, Hussein
    Angerbauer, Sabrina
    DeJesus-Hernandez, Mariely
    Konno, Takuya
    Lloyd-Jani, Anjali
    de Carvalho, Mamede
    Mouzat, Kevin
    Landers, John E.
    Veldink, Jan H.
    Silani, Vincenzo
    Gitler, Aaron D.
    Shaw, Christopher E.
    Rouleau, Guy A.
    van den Berg, Leonard H.
    Van Broeckhoven, Christine
    Rademakers, Rosa
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Kubisch, Christian
    A blinded international study on the reliability of genetic testing for GGGGCC-repeat expansions in C9orf72 reveals marked differences in results among 14 laboratories2014In: Journal of Medical Genetics, ISSN 0022-2593, E-ISSN 1468-6244, Vol. 51, no 6, p. 419-424Article in journal (Refereed)
    Abstract [en]

    Background The GGGGCC-repeat expansion in C9orf72 is the most frequent mutation found in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Most of the studies on C9orf72 have relied on repeat-primed PCR (RP-PCR) methods for detection of the expansions. To investigate the inherent limitations of this technique, we compared methods and results of 14 laboratories. Methods The 14 laboratories genotyped DNA from 78 individuals (diagnosed with ALS or FTD) in a blinded fashion. Eleven laboratories used a combination of amplicon-length analysis and RP-PCR, whereas three laboratories used RP-PCR alone; Southern blotting techniques were used as a reference. Results Using PCR-based techniques, 5 of the 14 laboratories got results in full accordance with the Southern blotting results. Only 50 of the 78 DNA samples got the same genotype result in all 14 laboratories. There was a high degree of false positive and false negative results, and at least one sample could not be genotyped at all in 9 of the 14 laboratories. The mean sensitivity of a combination of amplicon-length analysis and RP-PCR was 95.0% (73.9-100%), and the mean specificity was 98.0% (87.5-100%). Overall, a sensitivity and specificity of more than 95% was observed in only seven laboratories. Conclusions Because of the wide range seen in genotyping results, we recommend using a combination of amplicon-length analysis and RP-PCR as a minimum in a research setting. We propose that Southern blotting techniques should be the gold standard, and be made obligatory in a clinical diagnostic setting.

  • 3.
    Laumonnerie, Christophe
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Tong, Yong Guang
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Alstermark, Helena
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Wilson, Sara I.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Commissural axonal corridors instruct neuronal migration in the mouse spinal cord2015In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 6, article id 7028Article in journal (Refereed)
    Abstract [en]

    Unravelling how neurons are guided during vertebrate embryonic development has wide implications for understanding the assembly of the nervous system. During embryogenesis, migration of neuronal cell bodies and axons occurs simultaneously, but to what degree they influence each other's development remains obscure. We show here that within the mouse embryonic spinal cord, commissural axons bisect, delimit or preconfigure ventral interneuron cell body position. Furthermore, genetic disruption of commissural axons results in abnormal ventral interneuron cell body positioning. These data suggest that commissural axonal fascicles instruct cell body position by acting either as border landmarks (axon-restricted migration), which to our knowledge has not been previously addressed, or acting as cellular guides. This study in the developing spinal cord highlights an important function for the interaction of cell bodies and axons, and provides a conceptual proof of principle that is likely to have overarching implications for the development of neuronal architecture.

  • 4.
    Nordin, Angelica
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Akimoto, Chizuru
    Wuolikainen, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Alstermark, Helena
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Forsberg, Karin
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Baumann, Peter
    Pinto, Susana
    de Carvalho, Mamede
    Hübers, Annemarie
    Nordin, Frida
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Ludolph, Albert C.
    Weishaupt, Jochen H.
    Meyer, Thomas
    Grehl, Torsten
    Schweikert, Kathi
    Weber, Markus
    Burkhardt, Christian
    Neuwirth, Christoph
    Holmøy, Trygve
    Morita, Mitsuya
    Tysnes, Ole-Bjørn
    Benatar, Michael
    Wuu, Joanne
    Lange, Dale J.
    Bisgård, Carsten
    Asgari, Nasrin
    Tarvainen, Ilkka
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Andersen, Peter M.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience. Department of Neurology, Ulm University, Ulm, Germany.
    Sequence variations in C9orf72 downstream of the hexanucleotide repeat region and its effect on repeat-primed PCR interpretation: a large multinational screening study2017In: Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, ISSN 2167-8421, E-ISSN 2167-9223, Vol. 18, no 3-4, p. 256-264Article in journal (Refereed)
    Abstract [en]

    A large GGGGCC-repeat expansion mutation (HREM) in C9orf72 is the most common known cause of ALS and FTD in European populations. Sequence variations immediately downstream of the HREM region have previously been observed and have been suggested to be one reason for difficulties in interpreting RP-PCR data. Our objective was to determine the properties of these sequence variations with regard to prevalence, the range of variation, and effect on disease prognosis. We screened a multi-national cohort (n = 6981) for the HREM and samples with deviant RP-PCR curves were identified. The deviant samples were subsequently sequenced to determine sequence alteration. Our results show that in the USA and European cohorts (n = 6508) 10.7% carried the HREM and 3% had a sequence variant, while no HREM or sequence variants were observed in the Japanese cohort (n = 473). Sequence variations were more common on HREM alleles; however, certain population specific variants were associated with a non-expanded allele. In conclusion, we identified 38 different sequence variants, most located within the first 50 bp downstream of the HREM region. Furthermore, the presence of an HREM was found to be coupled to a lower age of onset and a shorter disease survival, while sequence variation did not have any correlation with these parameters.

  • 5.
    Nordin, Angelica
    et al.
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Akimoto, Chizuru
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience. Division of Neurology, Department of Internal Medicine, Jichi Medical University, 3311-1 Yakushiji Shimotsukeshi, Tochigi 329-0498, Japan.
    Wuolikainen, Anna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Alstermark, Helena
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Jonsson, Pär
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Birve, Anna
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Marklund, Stefan L
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Graffmo, Karin S
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Forsberg, Karin
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Andersen, Peter M
    Umeå University, Faculty of Medicine, Department of Pharmacology and Clinical Neuroscience, Clinical Neuroscience.
    Extensive size variability of the GGGGCC expansion in C9orf72 in both neuronal and non-neuronal tissues in 18 patients with ALS or FTD2015In: Human Molecular Genetics, ISSN 0964-6906, E-ISSN 1460-2083, Vol. 24, no 11, p. 3133-3142Article in journal (Refereed)
    Abstract [en]

    A GGGGCC-repeat expansion in C9orf72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) among Caucasians. However, little is known about the variability of the GGGGCC expansion in different tissues and whether this correlates with the observed phenotype. Here, we used Southern blotting to estimate the size of hexanucleotide expansions in C9orf72 in neural and non-neural tissues from 18 autopsied ALS and FTD patients with repeat expansion in blood. Digitalization of the Southern blot images allowed comparison of repeat number, smear distribution and expansion band intensity between tissues and between patients. We found marked intra-individual variation of repeat number between tissues, whereas there was less variation within each tissue group. In two patients, the size variation between tissues was extreme, with repeat numbers below 100 in all studied non-neural tissues, whereas expansions in neural tissues were 20-40 times greater and in the same size range observed in neural tissues of the other 16 patients. The expansion pattern in different tissues could not distinguish between diagnostic groups and no correlation was found between expansion size in frontal lobe and occurrence of cognitive impairment. In ALS patients, a less number of repeats in the cerebellum and parietal lobe correlated with earlier age of onset and a larger number of repeats in the parietal lobe correlated with a more rapid progression. In 43 other individuals without repeat expansion in blood, we find that repeat sizes up to 15 are stable, as no size variation between blood, brain and spinal cord was found.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf