umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Aksmann, Anna
    et al.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Tukaj, Zbigniew
    The mechanism of anthracene interaction with photosynthetic apparatus: A study using intact cells, thylakoid membranes and PS II complexes isolated from Chlamydomonas reinhardtii2011Ingår i: Aquatic Toxicology, ISSN 0166-445X, E-ISSN 1879-1514, Vol. 104, nr 3-4, s. 205-210Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Intact cells of Chlamydomonas reinhardtii as well as isolated thylakoid membranes and photosystem II complexes were used to examine a possible mechanism of anthracene (ANT) interaction with the photosynthetic apparatus. Since ANT concentrations above 1 mM were required to significantly inhibit the rate of oxygen evolution in PS II membrane fragments it may indicate that the toxicant did not directly interact with this photosystem. On the other hand, stimulation of oxygen uptake by ANT-treated thylakoids suggested that ANT could either act as an artificial electron acceptor in the photosynthetic electron transport chain or function as an uncoupler. Electron transfer from excited chlorophyll to ANT is impossible due to the very low reduction potential of ANT and therefore we propose that toxic concentrations of ANT increase the thylakoid membrane permeability and thereby function as an uncoupler, enhancing electron transport in vitro. Hence, its unspecific interference with photosynthetic membranes in vitro suggests that the inhibitory effect observed on intact cell photosynthesis is caused by uncoupling of phosphorylation. 

  • 2.
    Benlloch, Reyes
    et al.
    Department of Forest Genetics and Plant Physiology, SLU.
    Shevela, Dmitriy
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Hainzl, Tobias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Grundström, Christin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Shutova, Tatyana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sauer-Eriksson, Elisabeth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Crystal structure and functional characterization of Photosystem II-associated carbonic anhydrase CAH3 in Chlamydomonas reinhardtii2015Ingår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 167, nr 3, s. 950-962Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In oxygenic photosynthesis, light energy is stored in the form of chemical energy by converting CO2 and water into carbohydrates.The light-driven oxidation of water that provides the electrons and protons for the subsequent CO2 fixation takes place inphotosystem II (PSII). Recent studies show that in higher plants, HCO3– increases PSII activity by acting as a mobile acceptor ofthe protons produced by PSII. In the green alga Chlamydomonas reinhardtii, a luminal carbonic anhydrase, CrCAH3, was suggested toimprove proton removal from PSII, possibly by rapid reformation of HCO3– from CO2. In this study, we investigated the interplaybetween PSII and CrCAH3 by membrane inlet mass spectrometry and x-ray crystallography. Membrane inlet mass spectrometrymeasurements showed that CrCAH3 was most active at the slightly acidic pH values prevalent in the thylakoid lumen underillumination. Two crystal structures of CrCAH3 in complex with either acetazolamide or phosphate ions were determined at 2.6- and2.7-Å resolution, respectively. CrCAH3 is a dimer at pH 4.1 that is stabilized by swapping of the N-terminal arms, a feature notpreviously observed in a-type carbonic anhydrases. The structure contains a disulfide bond, and redox titration of CrCAH3 functionwith dithiothreitol suggested a possible redox regulation of the enzyme. The stimulating effect of CrCAH3 and CO2/HCO3– on PSIIactivity was demonstrated by comparing the flash-induced oxygen evolution pattern of wild-type and CrCAH3-less PSIIpreparations. We showed that CrCAH3 has unique structural features that allow this enzyme to maximize PSII activity at lowpH and CO2 concentration.

  • 3.
    Blanco-Rivero, Amaya
    et al.
    Madrid, Spain.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    José Román, María
    Madrid, Spain.
    Villarejo, Arsenio
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
    Martinez, Flor
    Madrid, Spain.
    Phosphorylation Controls the Localization and Activation of the Lumenal Carbonic Anhydrase in Chlamydomonas reinhardtii2012Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, nr 11, artikel-id e49063Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Cah3 is the only carbonic anhydrase (CA) isoform located in the thylakoid lumen of Chlamydomonas reinhardtii. Previous studies demonstrated its association with the donor side of the photosystem II (PSII) where it is required for the optimal function of the water oxidizing complex. However this enzyme has also been frequently proposed to perform a critical function in inorganic carbon acquisition and CO2 fixation and all mutants lacking Cah3 exhibit very poor growth after transfer to low CO2 conditions. Results/Conclusions: In the present work we demonstrate that after transfer to low CO2, Cah3 is phosphorylated and that phosphorylation is correlated to changes in its localization and its increase in activity. When C. reinhardtii wild-type cells were acclimated to limiting CO2 conditions, the Cah3 activity increased about 5-6 fold. Under these conditions, there were no detectable changes in the level of the Cah3 polypeptide. The increase in activity was specifically inhibited in the presence of Staurosporine, a protein kinase inhibitor, suggesting that the Cah3 protein was post-translationally regulated via phosphorylation. Immunoprecipitation and in vitro dephosphorylation experiments confirm this hypothesis. In vivo phosphorylation analysis of thylakoid polypeptides indicates that there was a 3-fold increase in the phosphorylation signal of the Cah3 polypeptide within the first two hours after transfer to low CO2 conditions. The increase in the phosphorylation signal was correlated with changes in the intracellular localization of the Cah3 protein. Under high CO2 conditions, the Cah3 protein was only associated with the donor side of PSII in the stroma thylakoids. In contrast, in cells grown at limiting CO2 the protein was partly concentrated in the thylakoids crossing the pyrenoid, which did not contain PSII and were surrounded by Rubisco molecules. Significance: This is the first report of a CA being post-translationally regulated and describing phosphorylation events in the thylakoid lumen.

  • 4.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Blanco-Rivero, Amaya
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Martínez-Bernardini, Andrea
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    N-glycosylation is required for trafficking and activity of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thalianaManuskript (preprint) (Övrigt vetenskapligt)
  • 5.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Blanco-Rivero, Amaya
    Martínez-Bernardini, Andrea
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Shevela, Dmitriy
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana2011Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, nr 6, s. e21021-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background

    The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells.

    Methodology/Principal Findings

    Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited.

    Conclusions/Significance

    We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.

  • 6.
    Carius, Anke B.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Rogne, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Duchoslav, Miloš
    Charles University, Prague, Czech Republic.
    Wolf-Watz, Magnus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Dynamic pH‐induced conformational changes of the PsbO protein in the fluctuating acidity of the thylakoid lumen2019Ingår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 166, nr 1, s. 288-299Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The PsbO protein is an essential extrinsic subunit of photosystem II, the pigment–protein complex responsible for light‐driven water splitting. Water oxidation in photosystem II supplies electrons to the photosynthetic electron transfer chain and is accompanied by proton release and oxygen evolution. While the electron transfer steps in this process are well defined and characterized, the driving forces acting on the liberated protons, their dynamics and their destiny are all largely unknown. It was suggested that PsbO undergoes proton‐induced conformational changes and forms hydrogen bond networks that ensure prompt proton removal from the catalytic site of water oxidation, i.e. the Mn4CaO5 cluster. This work reports the purification and characterization of heterologously expressed PsbO from green algae Chlamydomonas reinhardtii and two isoforms from the higher plant Solanum tuberosum (PsbO1 and PsbO2). A comparison to the spinach PsbO reveals striking similarities in intrinsic protein fluorescence and CD spectra, reflecting the near‐identical secondary structure of the proteins from algae and higher plants. Titration experiments using the hydrophobic fluorescence probe ANS revealed that eukaryotic PsbO proteins exhibit acid–base hysteresis. This hysteresis is a dynamic effect accompanied by changes in the accessibility of the protein's hydrophobic core and is not due to reversible oligomerization or unfolding of the PsbO protein. These results confirm the hypothesis that pH‐dependent dynamic behavior at physiological pH ranges is a common feature of PsbO proteins and causes reversible opening and closing of their β‐barrel domain in response to the fluctuating acidity of the thylakoid lumen.

  • 7.
    Koroidov, Sergey
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Shevela, Dmitriy
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Shutova, Tatyana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation2014Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 11, nr 17, s. 6299-6304Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cyanobacteria, algae and plants oxidize water to the O2 we breathe, and consume CO2 during the synthesis of biomass. Although these vital processes are functionally and structurally well separated in photosynthetic organisms, there is a long-debated role for CO2/HCO3 in water oxidation. Using membrane-inlet mass spectrometry we demonstrate that HCO3 acts as a mobile proton acceptor that helps to transport the protons produced inside of photosystem II by water-oxidation out into the chloroplast's lumen, resulting in a light-driven production of O2 and CO2. Depletion of HCO3 from the media leads, in the absence of added buffers, to a reversible down-regulation of O2 production by about 20%. These findings add a previously unidentified component to the regulatory network of oxygenic photosynthesis, and conclude the more than 50-y-long quest for the function of CO2/ HCO3 in photosynthetic water oxidation.

  • 8. Lundin, Björn
    et al.
    Thuswaldner, Sophie
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Eshaghi, Said
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Barber, James
    Andersson, Bertil
    Spetea, Cornelia
    Subsequent events to GTP binding by the plant PsbO protein: Structural changes, GTP hydrolysis and dissociation from the photosystem II complex2007Ingår i: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1767, nr 6, s. 500-508Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409–1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the β-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins.MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn2+ and Ca2+ ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.

  • 9. Moskvin, O V
    et al.
    Shutova, Tatyana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Khristin, M S
    Ignatova, L K
    Villarejo, Arsenio
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Klimov, V V
    Ivanov, B N
    Carbonic anhydrase activities in pea thylakoids.: A photosystem II core complex-associated carbonic anhydrase2004Ingår i: Photosynthesis Research, ISSN 0166-8595, Vol. 79, nr 1, s. 93-100Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pea thylakoids with high carbonic anhydrase (CA) activity (average rates of 5000 µmol H+ (mg Chl)–1 h–1 at pH 7.0) were prepared. Western blot analysis using antibodies raised against the soluble stromal beta-CA from spinach clearly showed that this activity is not a result of contamination of the thylakoids with the stromal CA but is derived from a thylakoid membrane-associated CA. Increase of the CA activity after partial membrane disintegration by detergent treatment, freezing or sonication implies the location of the CA in the thylakoid interior. Salt treatment of thylakoids demonstrated that while one part of the initial enzyme activity is easily soluble, the rest of it appears to be tightly associated with the membrane. CA activity being measured as HCO3 – dehydration (dehydrase activity) in Photosystem II particles (BBY) was variable and usually low. The highest and most reproducible activities (approximately 2000 µmol H+ (mg Chl)–1 h–1) were observed in the presence of detergents (Triton X-100 or n-octyl-beta-D-glucopyranoside) in low concentrations. The dehydrase CA activity of BBY particles was more sensitive to the lipophilic CA inhibitor, ethoxyzolamide, than to the hydrophilic CA inhibitor, acetazolamide. CA activity was detected in PS II core complexes with average rate of 13,000 µmol H+ (mg Chl)–1 h–1 which was comparable to CA activity in BBY particles normalized on a PS II reaction center basis.

  • 10. Nikitina, Julia
    et al.
    Shutova, Tatyana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Melnik, Bogdan
    Chernyshov, Sergey
    Marchenkov, Victor
    Semisotnov, Gennady
    Klimov, Vyacheslav
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Importance of a single disulfide bond for the PsbO protein of photosystem II: protein structure stability and soluble overexpression in Escherichia coli.2008Ingår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 98, s. 391-403Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    PsbO protein is an important constituent of the water–oxidizing complex, located on the lumenal side of photosystem II. We report here the efficient expression of the spinach PsbO in E. coli where the solubility depends entirely on the formation of the disulfide bond. The PsbO protein purified from a pET32 system that includes thioredoxin fusion is properly folded and functionally active. Urea unfolding experiments imply that the reduction of the single disulfide bridge decreases stability of the protein. Analysis of inter-residue contact density through the PsbO molecule shows that Cys51 is located in a cluster with high contact density. Reduction of the Cys28–Cys51 bond is proposed to perturb the packing interactions in this cluster and destabilize the protein as a whole. Taken together, our results give evidence that PsbO exists in solution as a compact highly ordered structure, provided that the disulfide bridge is not reduced.

  • 11.
    Renberg, Linda
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Johansson, Annika I.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Stenlund, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Aksmann, Anna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Raven, John A.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Moritz, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    A metabolomic approach to study major metabolite changes during acclimation to limiting CO2 in chlamydomonas reinhardtii2010Ingår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 154, nr 1, s. 187-196Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Using a gas chromatography-mass spectrometry-time of flight technique, we determined major metabolite changes during induction of the carbon-concentrating mechanism in the unicellular green alga Chlamydomonas reinhardtii. In total, 128 metabolites with significant differences between high-and low-CO2-grown cells were detected, of which 82 were wholly or partially identified, including amino acids, lipids, and carbohydrates. In a 24-h time course experiment, we show that the amino acids serine and phenylalanine increase transiently while aspartate and glutamate decrease after transfer to low CO2. The biggest differences were typically observed 3 h after transfer to low-CO2 conditions. Therefore, we made a careful metabolomic examination at the 3-h time point, comparing low-CO2 treatment to high-CO2 control. Five metabolites involved in photorespiration, 11 amino acids, and one lipid were increased, while six amino acids and, interestingly, 21 lipids were significantly lower. Our conclusion is that the metabolic pattern during early induction of the carbon-concentrating mechanism fit a model where photorespiration is increasing.

  • 12.
    Shevela, Dmitriy
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Max Planck Institute for Chemical Energy Conversion, Mülheim, Germany.
    Nöring, Birgit
    Max Planck Institute for Chemical Energy Conversion, Mülheim, Germany.
    Koroidov, Sergey
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Shutova, Tatyana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Max Planck Institute for Chemical Energy Conversion, Mülheim, Germany.
    Efficiency of photosynthetic water oxidation at ambient and depleted levels of inorganic carbon2013Ingår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 117, nr 1-3, s. 401-412Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Over 40 years ago, Joliot et al. (Photochem Photobiol 10:309-329, 1969) designed and employed an elegant and highly sensitive electrochemical technique capable of measuring O2 evolved by photosystem II (PSII) in response to trains of single turn-over light flashes. The measurement and analysis of flash-induced oxygen evolution patterns (FIOPs) has since proven to be a powerful method for probing the turnover efficiency of PSII. Stemler et al. (Proc Natl Acad Sci USA 71(12):4679-4683, 1974), in Govindjee's lab, were the first to study the effect of "bicarbonate" on FIOPs by adding the competitive inhibitor acetate. Here, we extend this earlier work by performing FIOPs experiments at various, strictly controlled inorganic carbon (Ci) levels without addition of any inhibitors. For this, we placed a Joliot-type bare platinum electrode inside a N2-filled glove-box (containing 10-20 ppm CO2) and reduced the Ci concentration simply by washing the samples in Ci-depleted media. FIOPs of spinach thylakoids were recorded either at 20-times reduced levels of Ci or at ambient Ci conditions (390 ppm CO2). Numerical analysis of the FIOPs within an extended Kok model reveals that under Ci-depleted conditions the miss probability is discernibly larger (by 2-3 %) than at ambient conditions, and that the addition of 5 mM HCO3 (-) to the Ci-depleted thylakoids largely restores the original miss parameter. Since a "mild" Ci-depletion procedure was employed, we discuss our data with respect to a possible function of free or weakly bound HCO3 (-) at the water-splitting side of PSII.

  • 13.
    Shitov, A V
    et al.
    Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, Russia.
    Zharmukhamedov, S K
    Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, Russia.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Allakhverdiev, S I
    Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, Russia.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Klimov, V V
    Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow, Russia.
    A carbonic anhydrase inhibitor induces bicarbonate-reversible suppression of electron transfer in pea photosystem 2 membrane fragments2011Ingår i: Journal of Photochemistry and Photobiology. B: Biology, ISSN 1011-1344, E-ISSN 1873-2682, Vol. 104, nr 1-2, s. 366-371Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The effects of suppression of the carbonic anhydrase (CA) activity by a CA-inhibitor, acetazolamide (AA), on the photosynthetic activities of photosystem II (PS II) particles from higher plants were investigated. AA along with CA-activity inhibits the PS II photosynthetic electron transfer and the AA-induced suppression is totally reversed by the addition of bicarbonate (3-5 mM). Similar effect of recovery in the PS II photosynthetic activity was also revealed upon the addition of known artificial electron donors (potassium ferrocyanide and TMPD). Significance and possible functions of CA for the PS II donor side are discussed.

  • 14.
    Shutova, Tatiana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kenneweg, Hella
    Buchta, Joachim
    Nikitina, Julia
    Terentyev, Vasily
    Chernyshov, Sergey
    Andersson, Bertil
    Allakhverdiev, Suleyman I.
    Klimov, Vyacheslav V.
    Dau, Holger
    Junge, Wolfgang
    Samuelsson, Göran
    The PSII-associated Cah3 in Chlamydomonas enhances the O2 evolution rate by proton removalIngår i: The EMBO journal, ISSN 0261-4189Artikel i tidskrift (Refereegranskat)
  • 15.
    Shutova, Tatiana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Klimov, Vyacheslav V.
    Andersson, Bertil
    Samuelsson, Göran
    cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of Photosystem II2007Ingår i: Biochimica et biophysica acta. Bioenergetics, ISSN 0005-2728, Vol. 1767, nr 6, s. 434-440Artikel i tidskrift (Refereegranskat)
  • 16.
    Shutova, Tatiana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, A
    Zietz, B
    Klimov, Vyacheslav
    Gillbro, T
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Renger, G
    Comparative studies on the properties of the extrinsic manganese-stabilizing protein from higher plants and of a synthetic peptide of its C-terminus2003Ingår i: Biochimica et biophysica acta. Bioenergetics, ISSN 0005-2728, Vol. 1604, nr 2, s. 95-104Artikel i tidskrift (Refereegranskat)
  • 17.
    Shutova, Tatyana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kenneweg, Hella
    Buchta, Joachim
    Nikitina, Julia
    Terentyev, Vasily
    Chernyshov, Sergey
    Andersson, Bertil
    Allakhverdiev, Suleyman I
    Klimov, Vyacheslav V
    Dau, Holger
    Junge, Wolfgang
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    The photosystem II-associated Cah3 in Chlamydomonas enhances the O(2) evolution rate by proton removal2008Ingår i: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 27, s. 782-791Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Water oxidation in photosystem II (PSII) is still insufficiently understood and is assumed to involve HCO3-. A Chlamydomonas mutant lacking a carbonic anhydrase associated with the PSII donor side shows impaired O2 evolution in the absence of HCO3-. The O2 evolution for saturating, continuous illumination (RO2) was slower than in the wild type, but was elevated by HCO3- and increased further by Cah3. The RO2 limitation in the absence of Cah3/HCO3- was amplified by H2O/D2O exchange, but relieved by an amphiphilic proton carrier, suggesting a role of Cah3/HCO3- in proton translocation. Chlorophyll fluorescence indicates a Cah3/HCO3- effect at the donor side of PSII. Time-resolved delayed fluorescence and O2-release measurements suggest specific effects on proton-release steps but not on electron transfer. We propose that Cah3 promotes proton removal from the Mn complex by locally providing HCO3-, which may function as proton carrier. Without Cah3, proton removal could become rate limiting during O2 formation and thus, limit water oxidation under high light. Our results underlie the general importance of proton release at the donor side of PSII during water oxidation.

  • 18.
    Shutova, Tatyana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Klimov, Vyacheslav V
    Andersson, Bertil
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    A cluster of carboxylic groups in PsbO protein is involved in proton transfer from the water oxidizing complex of Photosystem II.2007Ingår i: Biochimica et Biophysica Acta - Bioenergetics, ISSN 0005-2728, E-ISSN 1879-2650, Vol. 1767, s. 434-440Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The hypothesis presented here for proton transfer away from the water oxidation complex of Photosystem II (PSII) is supported by biochemical experiments on the isolated PsbO protein in solution, theoretical analyses of better understood proton transfer systems like bacteriorhodopsin and cytochrome oxidase, and the recently published 3D structure of PS II (Pdb entry 1S5L). We propose that a cluster of conserved glutamic and aspartic acid residues in the PsbO protein acts as a buffering network providing efficient acceptors of protons derived from substrate water molecules. The charge delocalization of the cluster ensures readiness to promptly accept the protons liberated from substrate water. Therefore protons generated at the catalytic centre of PSII need not be released into the thylakoid lumen as generally thought. The cluster is the beginning of a localized, fast proton transfer conduit on the lumenal side of the thylakoid membrane. Proton-dependent conformational changes of PsbO may play a role in the regulation of both supply of substrate water to the water oxidizing complex and the resultant proton transfer.

  • 19.
    Shutova, Tatyana
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Nikitina, Julia
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Deikus, Gintaras
    Andersson, Bertil
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Klimov, Vyacheslav
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Structural dynamics of the manganese-stabilizing protein-effect of pH, calcium, and manganese2005Ingår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 44, nr 46, s. 15182-15192Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The photosystem-II-associated 33-kDa extrinsic manganese-stabilizing protein is found in all oxygen-evolving organisms. In this paper, we show that this protein undergoes pH-induced conformational changes in the physiological pH range. At a neutral pH of 7.2, the hydrophobic amino acid residues that are most likely located inside the barrel are "closed" and the protein binds neither Mn2+ nor Ca2+ ions. When the protein is transferred to a solution with a slightly acidic pH of 5.7, hydrophobic amino acid residues become exposed to the surrounding medium, enabling them to bind the fluorescent probe 8,1-ANS. At this pH-induced open state, Mn2+ and Ca2+ bind to the manganese-stabilizing protein. The pH values used in this study, 7.2 and 5.7, are typical of the pH found in the thylakoid lumen in the dark and light, respectively. A model is presented in which the manganese-stabilizing protein undergoes a pH-dependent conformational change that in turn influences its capacity to bind calcium and manganese. In this model, the proton-dependent conformational changes of the tertiary structure of the manganese-stabilizing protein are of functional relevance for the regulation of substrate (water) delivery to and product (proton) release from the water-oxidizing complex by forming a proton-sensing proton-transport pathway.

  • 20. Villarejo, Arsenio
    et al.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Moskvin, Oleg
    Forssén, Magnus
    Klimov, Vyacheslav V.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    A photosystem II-associated carbonic anhydrase regulates the efficiency of photosynthetic oxygen evolution2002Ingår i: The EMBO Journal, ISSN 0261-4189, Vol. 21, nr 8, s. 1930–1938-Artikel i tidskrift (Refereegranskat)
1 - 20 av 20
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf