umu.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson-Evelönn, Emma
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Köhn, Linda
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Ljungberg, Börje
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    DNA methylation associates with survival in non-metastatic clear cell renal cell carcinoma2019In: BMC Cancer, ISSN 1471-2407, E-ISSN 1471-2407, Vol. 19, article id 65Article in journal (Refereed)
    Abstract [en]

    Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cancer and is associated with poor prognosis if metastasized. Up to one third of patients with local disease at diagnosis will develop metastasis after nephrectomy, and there is a need for new molecular markers to identify patients with high risk of tumor progression. In the present study, we performed genome-wide promoter DNA methylation analysis at diagnosis to identify DNA methylation profiles associated with risk for progress.

    Method: Diagnostic tissue samples from 115 ccRCC patients were analysed by Illumina HumanMethylation450K arrays and methylation status of 155,931 promoter associated CpGs were related to genetic aberrations, gene expression and clinicopathological parameters.

    Results: The ccRCC samples separated into two clusters (cluster A/B) based on genome-wide promoter methylation status. The samples in these clusters differed in tumor diameter (p < 0.001), TNM stage (p < 0.001), morphological grade (p < 0.001), and patients outcome (5 year cancer specific survival (pCSS5yr) p < 0.001 and cumulative incidence of progress (pCIP5yr) p < 0.001. An integrated genomic and epigenomic analysis in the ccRCCs, revealed significant correlations between the total number of genetic aberrations and total number of hypermethylated CpGs (R = 0.435, p < 0.001), and predicted mitotic age (R = 0.407, p < 0.001). We identified a promoter methylation classifier (PMC) panel consisting of 172 differently methylated CpGs accompanying progress of disease. Classifying non-metastatic patients using the PMC panel showed that PMC high tumors had a worse prognosis compared with the PMC low tumors (pCIP5yr 38% vs. 8%, p = 0.001), which was confirmed in non-metastatic ccRCCs in the publically available TCGA-KIRC dataset (pCIP5yr 39% vs. 16%, p < 0.001).

    Conclusion: DNA methylation analysis at diagnosis in ccRCC has the potential to improve outcome-prediction in non-metastatic patients at diagnosis.

  • 2.
    Degerman, Sofie
    et al.
    Umeå University, Faculty of Medicine. Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Borssen, Magnus
    Umeå University, Faculty of Medicine. Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Andersson, Emma
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Chranowska, Krystyna H.
    Department of Medical Genetics, Childrens Memorial Health institute, 04-730 Warsaw, Poland.
    Siwicki, Jan Konrad
    Department of Immunology, maria Sklodowska-Curie Memorial Cancer Centre and institute of Oncology, 02-781, Warsaw, Poland.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Senescence bypass and immortalization of T cell cultures are linked to stepwise DNA methylation changesManuscript (preprint) (Other academic)
  • 3.
    Degerman, Sofie
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landfors, Mattias
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics. Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Siwicki, Jan Konrad
    Revie, John
    Borssen, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Evelönn, Emma
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Forestier, Erik
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Chrzanowska, Krystyna H.
    Ryden, Patrik
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Keith, W. Nicol
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Immortalization of T-Cells Is Accompanied by Gradual Changes in CpG Methylation Resulting in a Profile Resembling a Subset of T-Cell Leukemias2014In: Neoplasia, ISSN 1522-8002, E-ISSN 1476-5586, Vol. 16, no 7, p. 606-615Article in journal (Refereed)
    Abstract [en]

    We have previously described gene expression changes during spontaneous immortalization of T-cells, thereby identifying cellular processes important for cell growth crisis escape and unlimited proliferation. Here, we analyze the same model to investigate the role of genome-wide methylation in the immortalization process at different time points pre-crisis and post-crisis using high-resolution arrays. We show that over time in culture there is an overall accumulation of methylation alterations, with preferential increased methylation close to transcription start sites (TSSs), islands, and shore regions. Methylation and gene expression alterations did not correlate for the majority of genes, but for the fraction that correlated, gain of methylation close to TSS was associated with decreased gene expression. Interestingly, the pattern of CpG site methylation observed in immortal T-cell cultures was similar to clinical T-cell acute lymphoblastic leukemia (T-ALL) samples classified as CpG island methylator phenotype positive. These sites were highly overrepresented by polycomb target genes and involved in developmental, cell adhesion, and cell signaling processes. The presence of non-random methylation events in in vitro immortalized T-cell cultures and diagnostic T-ALL samples indicates altered methylation of CpG sites with a possible role in malignant hematopoiesis.

  • 4.
    Evelönn, Emma Andersson
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Köhn, Linda
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology. Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Ljungberg, Börje
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    DNA methylation status defines clinicopathological parameters including survival for patients with clear cell renal cell carcinoma (ccRCC)2016In: Tumor Biology, ISSN 1010-4283, E-ISSN 1423-0380, Vol. 37, no 8, p. 10219-10228Article in journal (Refereed)
    Abstract [en]

    Epigenetic alterations in the methylome have been associated with tumor development and progression in renal cell carcinoma (RCC). In this study, 45 tumor samples, 12 tumor-free kidney cortex tissues, and 24 peripheral blood samples from patients with clear cell RCC (ccRCC) were analyzed by genome-wide promoter-directed methylation arrays and related to clinicopathological parameters. Unsupervised hierarchical clustering separated the tumors into two distinct methylation groups (clusters A and B), where cluster B had higher average methylation and increased number of hypermethylated CpG sites (CpGs). Furthermore, tumors in cluster B had, compared with cluster A, a larger tumor diameter (p = 0.033), a higher morphologic grade (p < 0.001), a higher tumor-node-metastasis (TNM) stage (p < 0.001), and a worse prognosis (p = 0.005). Higher TNM stage was correlated to an increase in average methylation level (p = 0.003) and number of hypermethylated CpGs (p = 0.003), whereas a number of hypomethylated CpGs were mainly unchanged. However, the predicted age of the tumors based on methylation profile did not correlate with TNM stage, morphological grade, or methylation cluster. Differently methylated (DM) genes (n = 840) in ccRCC samples compared with tumor-free kidney cortex samples were predominantly hypermethylated and a high proportion were identified as polycomb target genes. The DM genes were overrepresented by transcription factors, ligands, and receptors, indicating functional alterations of significance for ccRCC progression. To conclude, increased number of hypermethylated genes was associated with increased TNM stage of the tumors. DNA methylation classification of ccRCC tumor samples at diagnosis can serve as a clinically applicable prognostic marker in ccRCC.

  • 5.
    Li, Xingru
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Andersson-Evelönn, Emma
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Wang, Sihan
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Raviprakash, Tumkur Sitaram
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Ottosson, Sofia
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Andersson, Charlotta
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Nilsson, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Ljungberg, Börje
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Li, Aihong
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Prognostic Significance of Hypermethylation in the Promoter Region of the Wilms’ Tumour Gene 1 in Clear Cell Renal Cell CarcinomaManuscript (preprint) (Other academic)
  • 6.
    Sitaram, Raviprakash T
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Ljungberg, Börje
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Andersson, Emma
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Oji, Y
    Department of Cancer Stem Cell Biology, Osaka University Graduate School of Medicine, Osaka, Japan.
    Sugiyama, H
    Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka, Japan.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Li, Ai-Hong
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Clinical chemistry.
    Wilms' tumour 1 can suppress hTERT gene expression and telomerase activity in clear cell renal cell carcinoma via multiple pathways2010In: British Journal of Cancer, ISSN 0007-0920, E-ISSN 1532-1827, Vol. 103, no 8, p. 1255-1262Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Wilms' tumour 1 (WT1) gene was discovered as a tumour suppressor gene. Later findings have suggested that WT1 also can be oncogenic. This complexity is partly explained by the fact that WT1 has a number of target genes.

    METHOD: WT1 and its target gene human telomerase reverse transcriptase (hTERT) were analysed in clear cell renal cell carcinoma (ccRCC). In vitro experiments were performed to examine the functional link between WT1 and hTERT by overexpression of WT1 isoforms in the ccRCC cell line, TK-10.

    RESULTS: WT1 demonstrated lower RNA expression in ccRCC compared with renal cortical tissue, whereas hTERT was increased, showing a negative correlation between WT1 and hTERT (P=0.005). These findings were experimentally confirmed in vitro. The WT1 generated effect on hTERT promoter activity seemed complex, as several negative regulators of hTERT transcription, such as SMAD3, JUN (AP-1) and ETS1, were activated by WT1 overexpression. Downregulation of potential positive hTERT regulators, such as cMyc, AP-2α, AP-2γ, IRF1, NFX1 and GM-CSF, were also observed. Chromatin immunoprecipitation analysis verified WT1 binding to the hTERT, cMyc and SMAD3 promoters.

    CONCLUSION: The collected data strongly indicate multiple pathways for hTERT regulation by WT1 in ccRCC.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf