umu.sePublikasjoner
Endre søk
Begrens søket
1 - 18 of 18
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Asan, Noor Badariah
    et al.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Perez, Mauricio David
    Shah, Syaiful Redzwan Mohd
    Velander, Jacob
    Blokhuis, Taco J.
    Voigt, Thiemo
    Augustine, Robin
    Assessment of Blood Vessel Effect on Fat-Intrabody Communication Using Numerical and Ex-Vivo Models at 2.45 GHZ2019Inngår i: IEEE Access, E-ISSN 2169-3536, Vol. 7, s. 89886-89900Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The potential offered by the intra-body communication (IBC) over the past few years has resulted in a spike of interest for the topic, specifically for medical applications. Fat-IBC is subsequently a novel alternative technique that utilizes fat tissue as a communication channel. This work aimed to identify such transmission medium and its performance in varying blood-vessel systems at 2.45 GHz, particularly in the context of the IBC and medical applications. It incorporated three-dimensional (3D) electromagnetic simulations and laboratory investigations that implemented models of blood vessels of varying orientations, sizes, and positions. Such investigations were undertaken by using ex-vivo porcine tissues and three blood-vessel system configurations. These configurations represent extreme cases of real-life scenarios that sufficiently elucidated their principal influence on the transmission. The blood-vessel models consisted of ex-vivo muscle tissues and copper rods. The results showed that the blood vessels crossing the channel vertically contributed to 5.1 dB and 17.1 dB signal losses for muscle and copper rods, respectively, which is the worst-case scenario in the context of fat-channel with perturbance. In contrast, blood vessels aligned-longitudinally in the channel have less effect and yielded 4.5 dB and 4.2 dB signal losses for muscle and copper rods, respectively. Meanwhile, the blood vessels crossing the channel horizontally displayed 3.4 dB and 1.9 dB signal losses for muscle and copper rods, respectively, which were the smallest losses among the configurations. The laboratory investigations were in agreement with the simulations. Thus, this work substantiated the fat-IBC signal transmission variability in the context of varying blood vessel configurations.

  • 2. Asan, Noor Badariah
    et al.
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Shah, Syaiful Redzwan Mohd
    Rydberg, Anders
    Blokhuis, Taco J.
    Carlsson, Per-Ola
    Voigt, Thiemo
    Augustine, Robin
    Intra-body microwave communication through adipose tissue2017Inngår i: Healthcare technology letters, E-ISSN 2053-3713, Vol. 4, nr 4, s. 115-121Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The human body can act as a medium for the transmission of electromagnetic waves in the wireless body sensor networks context. However, there are transmission losses in biological tissues due to the presence of water and salts. This Letter focuses on lateral intra-body microwave communication through different biological tissue layers and demonstrates the effect of the tissue thicknesses by comparing signal coupling in the channel. For this work, the authors utilise the R-band frequencies since it overlaps the industrial, scientific and medical radio (ISM) band. The channel model in human tissues is proposed based on electromagnetic simulations, validated using equivalent phantom and ex-vivo measurements. The phantom and ex-vivo measurements are compared with simulation modelling. The results show that electromagnetic communication is feasible in the adipose tissue layer with a low attenuation of approximate to 2 dB per 20 mm for phantom measurements and 4 dB per 20 mm for ex-vivo measurements at 2 GHz. Since the dielectric losses of human adipose tissues are almost half of ex-vivo tissue, an attenuation of around 3 dB per 20 mm is expected. The results show that human adipose tissue can be used as an intra-body communication channel.

  • 3. Asan, Noor Badariah
    et al.
    Redzwan, Syaiful
    Rydberg, Anders
    Augustine, Robin
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Voigt, Thiemo
    Human Fat Tissue: A Microwave Communication Channel2017Inngår i: 2017 First IEEE MTT-S International Microwave Bio Conference (IMBIOC), IEEE, 2017Konferansepaper (Fagfellevurdert)
    Abstract [en]

    In this paper, we present an approach for communication through human body tissue in the R-band frequency range. This study examines the ranges of microwave frequencies suitable for intra-body communication. The human body tissues are characterized with respect to their transmission properties using simulation modeling and phantom measurements. The variations in signal coupling with respect to different tissue thicknesses are studied. The simulation and phantom measurement results show that electromagnetic communication in the fat layer is viable with attenuation of approximately 2 dB per 20 mm.

  • 4. Asan, Noor Badariah
    et al.
    Velander, Jacob
    Redzwan, Syaiful
    Augustine, Robin
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Voigt, Thiemo
    Blokhuis, Taco J.
    Reliability of the Fat Tissue Channel for Intra-body Microwave Communication2017Inngår i: 2017 IEEE Conference on Antenna Measurements & Applications (CAMA), IEEE , 2017, s. 310-313Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Recently, the human fat tissue has been proposed as a microwave channel for intra-body sensor applications. In this work, we assess how disturbances can prevent reliable microwave propagation through the fat channel. Perturbants of different sizes are considered. The simulation and experimental results show that efficient communication through the fat channel is possible even in the presence of perturbants such as embedded muscle layers and blood vessels. We show that the communication channel is not affected by perturbants that are smaller than 15 mm cube.

  • 5. Badariah Asan, Noor
    et al.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Velander, Jacob
    Redzwan Mohd Shah, Syaiful
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Blokhuis, Taco J.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Voigt, Thiemo
    Augustine, Robin
    Characterization of the Fat Channel for Intra-Body Communication at R-Band Frequencies2018Inngår i: Sensors, ISSN 1424-8220, E-ISSN 1424-8220, Vol. 18, nr 9, artikkel-id 2752Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper, we investigate the use of fat tissue as a communication channel between in-body, implanted devices at R-band frequencies (1.7–2.6 GHz). The proposed fat channel is based on an anatomical model of the human body. We propose a novel probe that is optimized to efficiently radiate the R-band frequencies into the fat tissue. We use our probe to evaluate the path loss of the fat channel by studying the channel transmission coefficient over the R-band frequencies. We conduct extensive simulation studies and validate our results by experimentation on phantom and ex-vivo porcine tissue, with good agreement between simulations and experiments. We demonstrate a performance comparison between the fat channel and similar waveguide structures. Our characterization of the fat channel reveals propagation path loss of ∼0.7 dB and ∼1.9 dB per cm for phantom and ex-vivo porcine tissue, respectively. These results demonstrate that fat tissue can be used as a communication channel for high data rate intra-body networks.

  • 6. Dessouky, Ahmed M.
    et al.
    Taha, Taha E.
    Dessouky, Mohamed M.
    Eltholth, Ashraf A.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communication Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
    Abd El-Samie, Fathi E.
    Non-parametric spectral estimation techniques for DNA sequence analysis and exon region prediction2019Inngår i: Computers & electrical engineering, ISSN 0045-7906, E-ISSN 1879-0755, Vol. 73, s. 334-348Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bioinformatics is the analysis of biological information using computers and statistical techniques. This paper presents non-parametric spectral estimation techniques based on the Discrete Fourier Transform (DFT) for the analysis of deoxyribonucleic acid (DNA) sequences. These techniques are efficient frequency-domain signal representation techniques, which improve the analysis of DNA sequences and enable the extraction of some desirable information that cannot be extracted from the time-domain representation of these sequences. The adopted techniques are the periodogram, average periodogram (Bartlett), modified average periodogram (Welch), and Blackman and Tukey spectral estimation techniques. The objective of these spectral estimation techniques is to investigate the locations of exons in DNA sequences for gene prediction. A comparison study is presented in this paper between the suggested spectral estimation techniques from the exon prediction perspective. The methods presented in this paper improve the detectability of peaks representing exon regions.

  • 7. Dessouky, Ahmed M.
    et al.
    Taha, Taha E.
    Dessouky, Mohamed M.
    Eltholth, Ashraf A.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communication Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf, Egypt.
    Abd El-Samie, Fathi E.
    Visual representation of DNA sequences for exon detection using non-parametric spectral estimation techniques2019Inngår i: Nucleosides, Nucleotides & Nucleic Acids, ISSN 1525-7770, E-ISSN 1532-2335, Vol. 38, nr 5, s. 321-337Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents a new approach for modeling of DNA sequences for the purpose of exon detection. The proposed model adopts the sum-of-sinusoids concept for the representation of DNA sequences. The objective of the modeling process is to represent the DNA sequence with few coefficients. The modeling process can be performed on the DNA signal as a whole or on a segment-by-segment basis. The created models can be used instead of the original sequences in a further spectral estimation process for exon detection. The accuracy of modeling is evaluated evaluated by using the Root Mean Square Error (RMSE) and the R-square metrics. In addition, non-parametric spectral estimation methods are used for estimating the spectral of both original and modeled DNA sequences. The results of exon detection based on original and modeled DNA sequences coincide to a great extent, which ensures the success of the proposed sum-of-sinusoids method for modeling of DNA sequences.

  • 8.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Metallic antenna design based on topology optimization techniques2013Licentiatavhandling, med artikler (Annet vitenskapelig)
  • 9.
    Hassan, Emadeldeen
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology optimization of antennas and waveguide transitions2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    This thesis introduces a topology optimization approach to design, from scratch, efficient microwave devices, such as antennas and waveguide transitions. The design of these devices is formulated as a general optimization problem that aims to build the whole layout of the device in order to extremize a chosen objective function. The objective function quantifies some required performance and is evaluated using numerical solutions to the 3D~Maxwell's equations by the finite-difference time-domain (FDTD) method. The design variables are the local conductivity at each Yee~edge in a given design domain, and a gradient-based optimization method is used to solve the optimization problem. In all design problems, objective function gradients are computed based on solutions to adjoint-field problems, which are also FDTD discretization of Maxwell's equations but solved with different source excitations. For any number of design variables, the computation of the objective function gradient requires one solution to the original field problem and one solution to the associated adjoint-field problem. The optimization problem is solved iteratively using the globally convergent Method of Moving Asymptotes (GCMMA).

    By the proposed approach, various design problems, including tens of thousands of design variables, are formulated and solved in a few hundred iterations. Examples of solved design problems are the design of wideband antennas, dual-band microstrip antennas, wideband directive antennas, and wideband coaxial-to-waveguide transitions. The fact that the proposed approach allows a fine-grained control over the whole layout of such devices results in novel devices with favourable performance. The optimization results are successfully verified with a commercial software package. Moreover, some devices are fabricated and their performance is successfully validated by experiments.

  • 10.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Scheiner, Benedict
    Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany.
    Michler, Fabian
    Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany.
    Weigel, Robert
    Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany.
    Lurz, Fabian
    Institute for Electronics Engineering, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91058 Erlangen, Germany.
    Design of Planar Microstrip-to-Waveguide Transitions Using Topology Optimization2019Inngår i: 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, USA, January 20-23, 2019, IEEE, 2019, s. -3Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper presents a topology optimization approach to design planar transitions between a microstrip line (MSL) and a rectangular waveguide (RWG) in the K-band. The transition comprises two sub-transitions: one from the MSL to a substrate integrated waveguide (SIW) and the second from the SIW to the RWG. Both are on the same substrate and can be manufactured with a standard printed circuit board process. This leads to a very costeffective solution compared with other approaches. A WR-42 waveguide can easily be surface mounted to the transitions using a standard flange. The transitions have been fabricated, and their measured performance shows good agreement with the simulations. The MSL-SIW transition has a broadband behavior and the SIW-RWG transition still reaches a relative bandwidth of 10%.

  • 11.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Augustine, Robin
    Uppsala University.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology optimization of planar antennas for wideband near-field coupling2015Inngår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 63, nr 9, s. 4208-4213Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present an approach to design from scratch planar microwave antennas for the purpose of ultra-wideband (UWB) near-field sensing. Up to about 120 000 design variables associated with square grids on planar substrates are subject to design, and a numerical optimization algorithm decides, after around 200 iterations, for each edge in the grid whether it should consist of metal or a dielectric. The antenna layouts produced with this approach show UWB impedance matching properties and near-field coupling coefficients that are flat over a much wider frequency range than a standard UWB antenna. The properties of the optimized antennas are successfully cross-verified with a commercial software and, for one of the designs, also validated experimentally. We demonstrate that an antenna optimized in this way shows a high sensitivity when used for near-field detection of a phantom with dielectric properties representative of muscle tissue.

  • 12.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of electronics and electrical communications, Menoufia University, Menouf, 32952, Egypt.
    Noreland, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology Optimisation of Wideband Coaxial-to-Waveguide Transitions2017Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikkel-id 45110Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To maximize the matching between a coaxial cable and rectangular waveguides, we present a computational topology optimisation approach that decides for each point in a given domain whether to hold a good conductor or a good dielectric. The conductivity is determined by a gradient-based optimisation method that relies on finite-difference time-domain solutions to the 3D Maxwell’s equations. Unlike previously reported results in the literature for this kind of problems, our design algorithm can efficiently handle tens of thousands of design variables that can allow novel conceptual waveguide designs. We demonstrate the effectiveness of the approach by presenting optimised transitions with reflection coefficients lower than −15dB over more than a 60% bandwidth, both for right-angle and end-launcher configurations. The performance of the proposed transitions is crossverified with a commercial software, and one design case is validated experimentally.

  • 13.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Conductive material distribution optimization for ultrawideband antennas2013Inngår i: Proceedings 11th International Conference on Mathematical and Numerical Aspects of Waves: Waves 2013, Tunis: ENIT-LAMSIN , 2013, s. 171-172Konferansepaper (Fagfellevurdert)
    Abstract [en]

    An Ultrawideband (UWB) planar monopole an-tenna is designed using the material distribution ap-proach to topology optimization. The design variablesare the local conductivity values in a 75 × 75 mm areawhere the radiating element can be located. Theantenna is optimized for maximum reception, in anattached coaxial cable, of incoming plane waves. Thewave propagation is modeled using the time domain3D Maxwell equations discretized using FDTD, andthe optimization is carried out using a gradient-basedoptimization method, in which the derivatives aresupplied through solving corresponding adjoint equa-tions. The outer dimensions of the optimized antennais 75 × 60 mm, and its reflection coefficient |S11 |,with respect to a feeding signal in the coaxial cable,stays below −10 dB throughout the frequency band1.2–9.7 GHz.

  • 14.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Patch and ground plane design of microstrip antennas by material distribution topologly optimization2014Inngår i: Progress in Electromagnetics Research B, ISSN 1937-6472, E-ISSN 1937-6472, Vol. 59, s. 89-102Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We use a gradient-based material distribution approach to design conductive parts of microstrip antennas in an efficient way. The approach is based on solutions of the 3D Maxwell's equation computed by the finite-difference time-domain (FDTD) method. Given a set of incoming waves, our objective is to maximize the received energy by determining the conductivity on each Yee-edge in the design domain. The objective function gradient is computed by the adjoint-field method. A microstrip antenna is designed to operate at 1.5 GHz with 0.3 GHz bandwidth. We present two design cases. In the first case, the radiating patch and the finite ground plane are designed in two separate phases, whereas in the second case, the radiating patch and the ground plane are simultaneously designed. We use more than 58,000 design variables and the algorithm converges in less than 150 iterations. The optimized designs have impedance bandwidths of 13% and 36% for the first and second design case, respectively.

  • 15.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Time-Domain Sensitivity Analysis for Conductivity Distribution in Maxwell's Equations2015Rapport (Annet vitenskapelig)
    Abstract [en]

    We present expressions for the derivatives of the outgoing signal in coaxial cables with respect to the conductivity distribution in a specific domain. The derived expressions can be used with gradient-based optimization methods to design metallic electromagnetic devices, such as antennas and waveguides. We use the adjoint-field method to derive the expressions and the derivation is based on the 3D time-domain Maxwell's equations. We present two derivative expressions; one expression is derived in the continuous case and the second is derived based on the FDTD discretization of Maxwell's equations, including the uniaxial perfectly match layer (UPML) to simulate the radiation boundary condition. The derivatives are validated through a numerical example, where derivatives computed by the adjoint-field method are compared against derivatives computed with finite differences. Up to 7 digits precision matching is obtained.

  • 16.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology optimization of metallic antennas2014Inngår i: IEEE Transactions on Antennas and Propagation, ISSN 0018-926X, E-ISSN 1558-2221, Vol. 62, nr 5, s. 2488-2500Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We introduce an approach to carry out layout optimization of metallic antenna parts. An optimization technique first developed for the optimization of load-bearing elastic structures is adapted for the purpose of metallic antenna design. The local conductivity values in a given region are used as design variables and are iteratively updated by a gradient-based optimization algorithm. Given a set of time-domain signals from exterior sources, the design objective is here to maximize the energy received by the antenna and transmitted to a coaxial cable. The optimization proceeds through a sequence of coarsely-defined lossy designs with successively increasing details and less losses as the iterations proceed. The objective function gradient is derived based on the FDTD discretization of Maxwell's equations and is expressed in terms of field solutions of the original antenna problem and an adjoint field problem. The same FDTD code, but with different wave sources, is used for both the original antenna problem and the adjoint problem. For any number of design variables, the gradient is evaluated on the basis of only two FDTD simulations, one for the original antenna problem and another for the adjoint field problem. We demonstrate the capability of the method by optimizing the radiating patch of both UWB monopole and microstrip antennas. The UWB monopole is designed to radiate over a wide frequency band 1-10 GHz, while the microstrip patch is designed for single and dual frequency band operation. In these examples, there are more than 20,000 design variables, and the algorithm typically converges in less than 150 iterations. The optimization results show a promising use of the proposed approach as a general method for conceptual design of near-resonance metallic antennas.

  • 17.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology optimization of UWB monopole antennas2013Inngår i: 7th European Conference on Antennas and Propagation (EuCAP2013), New York: IEEE conference proceedings, 2013, s. 1488-1492Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A Topology optimization technique is used for complete layout optimization of the radiating element of a planar monopole antenna. The design objective is to find a conductivity distribution that maximizes the energy received by the planar monopole over the frequency band 1-10 GHz. The finite difference time domain method (FDTD) is used for the numerical calculations, and an adjoint problem is derived to calculate the corresponding sensitivities. Numerical results show a promising use of topology optimization techniques for the systematic design of ultrawideband monopoles.

  • 18.
    Hassan, Emadeldeen
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. Department of Electronics and Electrical Communications, Menoufia University, Menouf, Egypt.
    Wadbro, Eddie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Hägg, Linus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Berggren, Martin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap.
    Topology optimization of compact wideband coaxial-to-waveguide transitions with minimum-size control2018Inngår i: Structural and multidisciplinary optimization (Print), ISSN 1615-147X, E-ISSN 1615-1488, Vol. 57, nr 4, s. 1765-1777Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    This paper presents a density-based topology optimization approach to design compact wideband coaxial-to-waveguide transitions. The underlying optimization problem shows a strong self penalization towards binary solutions, which entails mesh-dependent designs that generally exhibit poor performance. To address the self penalization issue, we develop a filtering approach that consists of two phases. The first phase aims to relax the self penalization by using a sequence of linear filters. The second phase relies on nonlinear filters and aims to obtain binary solutions and to impose minimum-size control on the final design. We present results for optimizing compact transitions between a 50-Ohm coaxial cable and a standard WR90 waveguide operating in the X-band (8-12 GHz).

1 - 18 of 18
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf