umu.sePublications
Change search
Refine search result
1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Caraballo, Rémi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Saleeb, Michael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Bauer, Johannes
    Interfaculty Institute of Biochemistry, University of Tübingen, Germany.
    Liaci, Antonio-Manuel
    Interfaculty Institute of Biochemistry, University of Tübingen, Germany.
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Storm, Rickard J
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Qian, Weixing
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Stehle, Thilo
    Interfaculty Institute of Biochemistry, University of Tübingen, Germany ; Department of Pediatrics, Vanderbilt University School of Medicine, USA.
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Triazole linker-based trivalent sialic acid inhibitors of adenovirus type 37 infection of human corneal epithelial cells2015In: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 13, no 35, p. 9194-9205Article in journal (Refereed)
    Abstract [en]

    Adenovirus type 37 (Ad37) is one of the principal agents responsible for epidemic keratoconjunctivitis (EKC), a severe ocular infection that remains without any available treatment. Recently, a trivalent sialic acid derivative (ME0322, Angew. Chem. Int. Ed., 2011, 50, 6519) was shown to function as a highly potent inhibitor of Ad37, efficiently preventing the attachment of the virion to the host cells and subsequent infection. Here, new trivalent sialic acid derivatives were designed, synthesized and their inhibitory properties against Ad37 infection of the human corneal epithelial cells were investigated. In comparison to ME0322, the best compound (17a) was found to be over three orders of magnitude more potent in a cell-attachment assay (IC50 = 1.4 nM) and about 140 times more potent in a cell-infection assay (IC50 = 2.9nM). X-ray crystallographic analysis demonstrated a trivalent binding mode of all compounds to the Ad37 fiber knob. For the most potent compound ophthalmic toxicity in rabbits was investigated and it was concluded that repeated eye administration did not cause any adverse effects.

  • 2.
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University.
    The glycobiology of human adenovirus infections: implications for tropism and treatment2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Human adenoviruses (HAdVs) are common human pathogens, causing gastrointestinal, ocular, and respiratory infections on a regular basis. Epidemic keratoconjunctivitis (EKC) is a severe ocular infection for which no approved antivirals are available. HAdV-D37 is one of the causative agents of EKC and uses sialic acid (SA)-containing glycans as cellular receptors. HAdV-D37 interacts with SA via the knob domain of the trimeric virus fiber protein, containing three SA-binding sites. HAdV-D37 also bind to glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, using biochemical and cell-based assays, the impact of GAGs on HAdV-D37 infection (paper I) was investigated. We found that HAdV-D37 interacts with both soluble and cell-surface sulfated GAGs via the knob domain of the viral fiber protein. Remarkably, removal of heparan sulfate (HS; a type of GAG) from human corneal epithelial (HCE) cells by heparinase III enhanced HAdV-D37 infection. We propose that sulfated GAGs in bodily secretions and on plasma membranes function as decoy receptors that prevent the virus from binding to SA-containing receptors and inhibit subsequent virus infection. We also found abundant HS in the basement membrane of the human corneal epithelium. We suggest that this layer of HS functions as a barrier to sub-epithelial infection of HAdV-D37. Based on this finding, we hypothesized that GAG-mimetics may act as artificial decoy receptors and inhibit HAdV-D37 infection. Here, the antiviral effect of suramin (a known GAG-mimetic) and its analogs against HAdV-D37 (paper II) was evaluated. Interestingly, all compounds displayed antiviral effects by inhibiting the binding of HAdV-D37 to HCE cells. The antiviral effect of suramin was HAdV species-specific. We report for the first time that virus binding to cell-surface decoy receptor constitutes a potential target for antiviral drug development.

    HAdVs are the major cause of infectious conjunctivitis, constituting up to 75% of all conjunctivitis cases worldwide. Species B HAdV type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause EKC. Recently, HAdV-D53, -D54, and -D56 have emerged as new EKC-causing agents. HAdV-E4 causes both PCF and EKC. SA-containing glycans have been established as cellular receptors for HAdV-D37. By means of cell-based assays, we investigated if ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells (paper III). It was found that SA-containing glycans function as cellular receptors for five (HAdV-D8, -D37, -D53, -D54, and -D64) out of six EKC-causing species D HAdVs. We showed that these viruses interact with SAs via the knob domain of the viral fiber protein. HAdV-E4 and -D56 infection of cells was independent of SAs. Surprisingly, HCE cells were completely refractory to HAdV-B3 infection. A trivalent sialic acid (TSA) derivative ME0462 (compound 17a in paper II), designed to bind to SA-binding sites on HAdV-D37 fiber knob, also showed potent antiviral activity against several EKC-causing HAdVs. This suggests that ME0462 can be used as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs. Surface plasmon resonance (SPR) analysis confirmed a direct interaction between ME0462 and fiber knobs of EKC-causing HAdVs.

    Recently, a TSA derivative (ME0322; designed to bind to SA-binding sites on HAdV-D37 fiber knob) was shown potent antiviral against HAdV-D37 in vitro. To improve the antiviral potency of this compound, six new TSA derivatives were synthesized and their inhibitory effects were evaluated against HAdV-D37 (paper IV). Interestingly, the best compound 17a was found approximately three orders of magnitude more potent (IC50 (binding) = 1.4 nM, IC50 (infection) = 2.9 nM) than ME0322 (IC50 in µM range). SPR data showed that HAdV-D37 fiber knob binds to TSA compounds with high affinities. Structural data revealed the trivalent binding mode of all newly synthesized TSA compounds to HAdV-D37 fiber knob. Ophthalmic toxicity of compound 17a (best compound) was also investigated in rabbits without any sign of toxicity.

    HAdV-D36 is a member of species D HAdV and has the ability to infect a broad range of animals, which is unusual for HAdVs. Another remarkable feature of HAdV-D36 is that this virus induces obesity in experimental animals. Several epidemiological studies highlighted a link between HAdV-D36 and human obesity. There is no information about the cellular receptor usage by HAdV-D36. Using structural biology and cell-based approaches, we investigated the cellular receptor(s) for HAdV-D36 (paper V).  We show that HAdV-D36 attaches to host cells (via the fiber knob) using the coxsackie and adenovirus receptor (CAR), SA-containing glycans, and one or more unknown proteins or glycoproteins. Using glycan microarray, we found that HAdV-D36 displays binding preference to a rare SA-variant: 4-O,5-N-diacetylneuraminic acid (Neu4,5Ac2), over the more common SA (in humans) i.e. 5-N-acetylneuraminic acid (Neu5Ac). Structural analysis of HAdV-D36 fiber knob:Neu4,5Ac2 complex explained this preference. To date, Neu4,5Achas not been detected in humans, although it is synthesized by many domestic and livestock animals. Our results indicate that HAdV-D36 has evolved to utilize a specialized set of cellular receptors that coincide with a unique host range and pathogenicity profile.

    These studies provide insights into multiple roles of glycans in HAdV infection cycle and highlight the therapeutic potential of glycans/glycan-mimetics in HAdV-D37 infection.

  • 3.
    Chandra, Naresh
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Decoy Receptor Interactions as Novel Drug Targets against EKC-Causing Human Adenovirus2019In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 11, no 3, article id E242Article in journal (Refereed)
    Abstract [en]

    Epidemic keratoconjunctivitis (EKC) is a severe ocular disease and can lead to visual impairment. Human adenovirus type-37 (HAdV-D37) is one of the major causative agents of EKC and uses sialic acid (SA)-containing glycans as cellular receptors. Currently, there are no approved antivirals available for the treatment of EKC. Recently, we have reported that sulfated glycosaminoglycans (GAGs) bind to HAdV-D37 via the fiber knob (FK) domain of the viral fiber protein and function as decoy receptors. Based on this finding, we speculated that GAG-mimetics may act as artificial decoy receptors and inhibit HAdV-D37 infection. Repurposing of approved drugs to identify new antivirals has drawn great attention in recent years. Here, we report the antiviral effect of suramin, a WHO-approved drug and a widely known GAG-mimetic, against HAdV-D37. Commercially available suramin analogs also show antiviral effects against HAdV-D37. We demonstrate that suramin exerts its antiviral activity by inhibiting the attachment of HAdV-D37 to cells. We also reveal that the antiviral effect of suramin is HAdV species-specific. Collectively, in this proof of concept study, we demonstrate for the first time that virus binding to a decoy receptor constitutes a novel and an unexplored target for antiviral drug development.

  • 4.
    Chandra, Naresh
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Imhof, Sophie
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Caraballo, Rémi
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Elofsson, Mikael
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Sialic Acid-Containing Glycans as Cellular Receptors for Ocular Human Adenoviruses: Implications for Tropism and Treatment2019In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 11, no 5, article id 395Article in journal (Refereed)
    Abstract [en]

    Human adenoviruses (HAdV) are the most common cause of ocular infections. Species B human adenovirus type 3 (HAdV-B3) causes pharyngoconjunctival fever (PCF), whereas HAdV-D8, -D37, and -D64 cause epidemic keratoconjunctivitis (EKC). Recently, HAdV-D53, -D54, and -D56 emerged as new EKC-causing agents. HAdV-E4 is associated with both PCF and EKC. We have previously demonstrated that HAdV-D37 uses sialic acid (SA)-containing glycans as cellular receptors on human corneal epithelial (HCE) cells, and the virus interaction with SA is mediated by the knob domain of the viral fiber protein. Here, by means of cell-based assays and using neuraminidase (a SA-cleaving enzyme), we investigated whether ocular HAdVs other than HAdV-D37 also use SA-containing glycans as receptors on HCE cells. We found that HAdV-E4 and -D56 infect HCE cells independent of SAs, whereas HAdV-D53 and -D64 use SAs as cellular receptors. HAdV-D8 and -D54 fiber knobs also bound to cell-surface SAs. Surprisingly, HCE cells were found resistant to HAdV-B3 infection. We also demonstrated that the SA-based molecule i.e., ME0462, designed to bind to SA-binding sites on the HAdV-D37 fiber knob, efficiently prevents binding and infection of several EKC-causing HAdVs. Surface plasmon resonance analysis confirmed a direct interaction between ME0462 and fiber knobs. Altogether, we demonstrate that SA-containing glycans serve as receptors for multiple EKC-causing HAdVs, and, that SA-based compound function as a broad-spectrum antiviral against known and emerging EKC-causing HAdVs.

  • 5.
    Chandra, Naresh
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Liu, Yan
    Liu, Jing-Xia
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Wu, Nian
    Silva, Lisete M
    Lindström, Mona
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Chai, Wengang
    Domellöf, Fatima Pedrosa
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Feizi, Ten
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Sulfated Glycosaminoglycans as Viral Decoy Receptors for Human Adenovirus Type 372019In: Viruses, ISSN 1999-4915, E-ISSN 1999-4915, Vol. 11, no 3, article id E247Article in journal (Refereed)
    Abstract [en]

    Glycans on plasma membranes and in secretions play important roles in infection by many viruses. Species D human adenovirus type 37 (HAdV-D37) is a major cause of epidemic keratoconjunctivitis (EKC) and infects target cells by interacting with sialic acid (SA)-containing glycans via the fiber knob domain of the viral fiber protein. HAdV-D37 also interacts with sulfated glycosaminoglycans (GAGs), but the outcome of this interaction remains unknown. Here, we investigated the molecular requirements of HAdV-D37 fiber knob:GAG interactions using a GAG microarray and demonstrated that fiber knob interacts with a broad range of sulfated GAGs. These interactions were corroborated in cell-based assays and by surface plasmon resonance analysis. Removal of heparan sulfate (HS) and sulfate groups from human corneal epithelial (HCE) cells by heparinase III and sodium chlorate treatments, respectively, reduced HAdV-D37 binding to cells. Remarkably, removal of HS by heparinase III enhanced the virus infection. Our results suggest that interaction of HAdV-D37 with sulfated GAGs in secretions and on plasma membranes prevents/delays the virus binding to SA-containing receptors and inhibits subsequent infection. We also found abundant HS in the basement membrane of the human corneal epithelium, which may act as a barrier to sub-epithelial infection. Collectively, our findings provide novel insights into the role of GAGs as viral decoy receptors and highlight the therapeutic potential of GAGs and/or GAG-mimetics in HAdV-D37 infection.

  • 6. Duffy, Margaret R.
    et al.
    Alonso-Padilla, Julio
    John, Lijo
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Khan, Selina
    Ballmann, Monika Z.
    Lipiec, Agnieszka
    Heemskerk, Evert
    Custers, Jerome
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Havenga, Menzo
    Baker, Andrew H.
    Lemckert, Angelique
    Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 562018In: Journal of General Virology, ISSN 0022-1317, E-ISSN 1465-2099, Vol. 99, p. 135-147Article in journal (Refereed)
    Abstract [en]

    The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.

  • 7. Lasswitz, Lisa
    et al.
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Gerold, Gisa
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Medical School Hannover and the Helmholtz Centre for Infection Research, Hannover, Germany.
    Glycomics and Proteomics Approaches to Investigate Early Adenovirus-Host Cell Interactions2018In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 430, no 13, p. 1863-1882Article in journal (Refereed)
    Abstract [en]

    Adenoviruses as most viruses rely on glycan and protein interactions to attach to and enter susceptible host cells. The Adenoviridae family comprises more than 80 human types and they differ in their attachment factor and receptor usage, which likely contributes to the diverse tropism of the different types. In the past years, methods to systematically identify glycan and protein interactions have advanced. In particular sensitivity, speed and coverage of mass spectrometric analyses allow for high-throughput identification of glycans and peptides separated by liquid chromatography. Also, developments in glycan microarray technologies have led to targeted, high-throughput screening and identification of glycan-based receptors. The mapping of cell surface interactions of the diverse adenovirus types has implications for cell, tissue, and species tropism as well as drug development. Here we review known adenovirus interactions with glycan- and protein-based receptors, as well as glycomics and proteomics strategies to identify yet elusive virus receptors and attachment factors. We finally discuss challenges, bottlenecks, and future research directions in the field of non-enveloped virus entry into host cells.

  • 8. Liaci, AM
    et al.
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Section of Virology.
    Munender, S
    Liu, Y
    Pfenning, V
    Bachmann, P
    Caraballo, R
    Chai, W
    Johansson, E
    Cupelli, K
    Hassemer, T
    Blaum, B
    Elofsson, M
    Feizi, T
    Arnberg, N
    Stehle, T
    Primary attachment receptors of human adenovirus type 36Manuscript (preprint) (Other academic)
  • 9. Majhen, Dragomira
    et al.
    Calderon, Hugo
    Chandra, Naresh
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Alberto Fajardo, Carlos
    Rajan, Anandi
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Alemany, Ramon
    Custers, Jerome
    Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field2014In: Human Gene Therapy, ISSN 1043-0342, E-ISSN 1557-7422, Vol. 25, no 4, p. 301-317Article, review/survey (Refereed)
    Abstract [en]

    The field of adenovirology is undergoing rapid change in response to increasing appreciation of the potential advantages of adenoviruses as the basis for new vaccines and as vectors for gene and cancer therapy. Substantial knowledge and understanding of adenoviruses at a molecular level has made their manipulation for use as vaccines and therapeutics relatively straightforward in comparison with other viral vectors. In this review we summarize the structure and life cycle of the adenovirus and focus on the use of adenovirus-based vectors in vaccines against infectious diseases and cancers. Strategies to overcome the problem of preexisting antiadenovirus immunity, which can hamper the immunogenicity of adenovirus-based vaccines, are discussed. When armed with tumor-associated antigens, replication-deficient and oncolytic adenoviruses can efficiently activate an antitumor immune response. We present concepts on how to use adenoviruses as therapeutic cancer vaccines and consider some of the strategies used to further improve antitumor immune responses. Studies that explore the prospect of adenoviruses as vaccines against infectious diseases and cancer are underway, and here we give an overview of the latest developments.

1 - 9 of 9
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf