umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Asghar, Naveed
    et al.
    Lee, Yi-Ping
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nilsson, Emma
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Melik, Wessam
    Kröger, Andrea
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Johansson, Magnus
    The role of the poly(A) tract in the replication and virulence of tick-borne encephalitis virus2016Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikel-id 39265Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The tick-borne encephalitis virus (TBEV) is a flavivirus transmitted to humans, usually via tick bites. The virus causes tick-borne encephalitis (TBE) in humans, and symptoms range from mild flu-like symptoms to severe and long-lasting sequelae, including permanent brain damage. It has been suggested that within the population of viruses transmitted to the mammalian host, quasispecies with neurotropic properties might become dominant in the host resulting in neurological symptoms. We previously demonstrated the existence of TBEV variants with variable poly(A) tracts within a single blood-fed tick. To characterize the role of the poly(A) tract in TBEV replication and virulence, we generated infectious clones of Toro-2003 with the wild-type (A)(3)C(A)(6) sequence (Toro-6A) or with a modified (A)(3)C(A)(38) sequence (Toro-38A). Toro-38A replicated poorly compared to Toro-6A in cell culture, but Toro-38A was more virulent than Toro-6A in a mouse model of TBE. Next-generation sequencing of TBEV genomes after passaging in cell culture and/or mouse brain revealed mutations in specific genomic regions and the presence of quasispecies that might contribute to the observed differences in virulence. These data suggest a role for quasispecies development within the poly(A) tract as a virulence determinant for TBEV in mice.

  • 2. Asghar, Naveed
    et al.
    Lindblom, Pontus
    Melik, Wessam
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Haglund, Mats
    Forsberg, Pia
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Andreassen, Åshild
    Lindgren, Per-Eric
    Johansson, Magnus
    Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance2014Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, nr 7, s. e103264-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3' non-coding region (3'NCR). A different genomic structure was found in the 3'NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3'NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A) 3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A) 3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the resequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.

  • 3. Henningsson, Anna J.
    et al.
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Norberg, Peter
    Lindblom, Pontus
    Roth, Anette
    Forsberg, Pia
    Bergström, Tomas
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Lindgren, Per-Eric
    Human Tick-Borne Encephalitis and Characterization of Virus from Biting Tick2016Ingår i: Emerging Infectious Diseases, ISSN 1080-6040, E-ISSN 1080-6059, Vol. 22, nr 8, s. 1485-1487Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We report a case of human tick-borne encephalitis (TBE) in which the TBE virus was isolated from the biting tick. Viral growth and sequence were characterized and compared with those of a reference strain. Virus isolation from ticks from patients with TBE may offer a new approach for studies of epidemiology and pathogenicity.

  • 4.
    Lindquist, Richard
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    The Role of Viperin in Antiflavivirus Responses2018Ingår i: DNA and Cell Biology, ISSN 1044-5498, E-ISSN 1557-7430, Vol. 37, nr 9, s. 725-730Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Viperin is an interferon (IFN)-stimulated gene product, which is part of the first line of the intracellular response against viral infection. It is a potent antiviral protein, strongly upregulated after IFN-stimulation and virus infection. Viperin is antivirally active against many different viruses from different families and has been shown to inhibit several flaviviruses. Flaviviruses are an important group of arthropod-borne viruses that cause millions of infections annually. In this review, we focus on the recent advances of the antiviral mechanisms of viperin against these flaviviruses, both pointing to similarities and differences between viruses within the same genera.

  • 5. Lindqvist, Richard
    Brain region- and cell type-specific role of viperin in neurotropic flavivirus infectionManuskript (preprint) (Övrigt vetenskapligt)
  • 6.
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    The role of the type I interferons and viperin during neurotropic flavivirus infection2017Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Flaviviruses are globally distributed pathogens that cause millions of human infections annually. One of the most detrimental outcomes of flavivirus infection is encephalitis, which is caused by neurotropic flaviviruses such as West Nile virus (WNV), Japanese encephalitis virus (JEV), and Tick-borne encephalitis virus (TBEV). The type I interferons (IFNs) are powerful cytokines, and they are known as the first line of defense against viral infection. IFNs are expressed at low or undetectable levels at the basal state, but recognition of invading pathogens triggers a robust IFN response. After synthesis, IFN is secreted and acts in an autocrine or paracrine manner by binding to the interferon-α/β receptor (IFNAR) receptor, which is expressed on the surface of all nucleated cells. Binding to IFNAR mediates a downstream cascade that triggers expression of hundreds of interferon-stimulated genes (ISGs). Some ISGs express signaling molecules to amplify the response while others are potent antiviral proteins that can efficiently limit viral infection. The impact of the type I IFN response in tick-borne flavivirus infection was not previously known. We found that the type I IFN response was crucial for protection of mice against neurotropic infection with tick-borne flaviviruses such as TBEV and Langat virus (LGTV). The response was needed both in the periphery as well as in the central nervous system (CNS), as transgenic mice lacking either peripherally or CNS-located IFNAR both succumbed to LGTV infection. Although we found that the local IFN response within the CNS is essential for protection against lethal LGTV infection, the cells responsible for the local IFN production were not known.

    Astrocytes are one of the most abundant cell types within the CNS, but their role in neurotropic flavivirus infection was not fully characterized. In other viral infections, astrocytes are potent IFN producers, thus we were interested in characterizing the role of the type I IFN response in astrocytes during neurotropic flavivirus infection and its contribution to flavivirus pathogenesis. We found that upon flavivirus infection, astrocytes mount a strong type I IFN response that protects neighboring astrocytes from TBEV, JEV, WNV, and ZIKV infection. Furthermore, IFN signaling was found to protect astrocytes from TBEV-induced cytopathic effects. However, the ISGs that mediated these effects were not known.

    In vitro studies of viperin, which was discovered in 2001 as an ISG with broad antiviral activity, has shown strong antiviral activity against TBEV, but its role in vivo and mode of action in flavivirus infection was not known. Using mice deficient in viperin, we wanted to determine the role of viperin in flavivirus infection. We found that viperin plays a region-specific role in the brain by controlling LGTV replication in the olfactory bulb and cerebrum. Remarkably, viperin was able to inhibit TBEV replication in primary cortical neurons isolated from the cerebrum but not in granule cell neurons isolated from the cerebellum. Furthermore, IFN treatment failed to compensate for loss of viperin in cortical neurons, indicating that viperin might be the most important ISG against TBEV in cortical neurons. Interestingly, we also found that viperin is needed for the IFN-mediated antiviral response against WNV and ZIKV in cortical neurons. Thus, viperin showed broad but region-specific antiviral mechanisms against different flaviviruses.

    Although viperin has been shown to inhibit many viruses, the molecular antiviral mechanism is not clear and appears to differ between viruses. We performed a co-immunoprecipitation (CoIP) screen to identify TBEV proteins that could interact with viperin, and prM, E, NS2A, NS2B, and NS3 were identified. Interaction of viperin with NS3 resulted in degradation of the viral protein. We screened NS3 of JEV, yellow fever virus (YFV), ZIKV, and TBEV. Interestingly, although all NS3 proteins tested interacted with viperin, only those of ZIKV, and TBEV were significantly degraded by viperin. The degradation of NS3 correlated well with the antiviral activity of viperin, as only TBEV and ZIKV were inhibited.

    In summary, this work revealed the importance of the local type I IFN response in the brain during neurotropic infections by flaviviruses. We identified astrocytes to be an important IFN producer within the CNS during neurotropic flavivirus infection. Astrocytes release type I IFN quickly after viral infection, and this interferon protects neighboring neurons and astrocytes from infection. Furthermore, viperin, a very potent antiviral ISG, is highly expressed in astrocytes and it is essential for controlling viral replication and mediating viral clearance in both neurons and astrocytes of the cerebrum. We also found that viperin specifically targeted the NS3 proteins of TBEV and ZIKV for degradation.

  • 7.
    Lindqvist, Richard
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Kurhade, Chaitanya
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Gilthorpe, Jonathan D.
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Cell-type- and region-specific restriction of neurotropic flavivirus infection by viperin2018Ingår i: Journal of Neuroinflammation, ISSN 1742-2094, E-ISSN 1742-2094, Vol. 15, artikel-id 80Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Flaviviruses are a group of diverse and emerging arboviruses and an immense global health problem. A number of flaviviruses are neurotropic, causing severe encephalitis and even death. Type I interferons (IFNs) are the first line of defense of the innate immune system against flavivirus infection. IFNs elicit the concerted action of numerous interferon-stimulated genes (ISGs) to restrict both virus infection and replication. Viperin (virus-inhibitory protein, endoplasmic reticulum-associated, IFN-inducible) is an ISG with broad-spectrum antiviral activity against multiple flaviviruses in vitro. Its activity in vivo restricts neurotropic infections to specific regions of the central nervous system (CNS). However, the cell types in which viperin activity is required are unknown. Here we have examined both the regional and cell-type specificity of viperin in the defense against infection by several model neurotropic flaviviruses.

    Methods: Viral burden and IFN induction were analyzed in vivo in wild-type and viperin(-/-) mice infected with Langat virus (LGTV). The effects of IFN pretreatment were tested in vitro in primary neural cultures from different brain regions in response to infection with tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Zika virus (ZIKV).

    Results: Viperin activity restricted nonlethal LGTV infection in the spleen and the olfactory bulb following infection via a peripheral route. Viperin activity was also necessary to restrict LGTV replication in the olfactory bulb and the cerebrum following CNS infection, but not in the cerebellum. In vitro, viperin could restrict TBEV replication in primary cortical neurons, but not in the cerebellar granule cell neurons. Interferon-induced viperin was also very important in primary cortical neurons to control TBEV, WNV, and ZIKV.

    Conclusions: Our findings show that viperin restricts replication of neurotropic flaviviruses in the CNS in a region- and cell-type-specific manner. The most important sites of activity are the olfactory bulb and cerebrum. Activity within the cerebrum is required in the cortical neurons in order to restrict spread. This study exemplifies cell type and regional diversity of the IFN response within the CNS and shows the importance of a potent broad-spectrum antiviral ISG.

  • 8.
    Lindqvist, Richard
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Kurhade, Chaitanya
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Gilthorpe, Jonathan
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Viperin restrict neurotropic flavivirus infection in cell type and region-specific mannerManuskript (preprint) (Övrigt vetenskapligt)
  • 9.
    Lindqvist, Richard
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Mundt, Filip
    Gilthorpe, Jonathan D.
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Woelfel, Silke
    Gekara, Nelson O.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Kroeger, Andrea
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Fast type I interferon response protects astrocytes from flavivirus infection and virus-induced cytopathic effects2016Ingår i: Journal of Neuroinflammation, ISSN 1742-2094, E-ISSN 1742-2094, Vol. 13, artikel-id 277Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Neurotropic flaviviruses such as tick-borne encephalitis virus (TBEV), Japanese encephalitis virus (JEV), West Nile virus (WNV), and Zika virus (ZIKV) are causative agents of severe brain-related diseases including meningitis, encephalitis, and microcephaly. We have previously shown that local type I interferon response within the central nervous system (CNS) is involved in the protection of mice against tick-borne flavivirus infection. However, the cells responsible for mounting this protective response are not defined. Methods: Primary astrocytes were isolated from wild-type (WT) and interferon alpha receptor knock out (IFNAR(-/-)) mice and infected with neurotropic flaviviruses. Viral replication and spread, IFN induction and response, and cellular viability were analyzed. Transcriptional levels in primary astrocytes treated with interferon or supernatant from virus-infected cells were analyzed by RNA sequencing and evaluated by different bioinformatics tools. Results: Here, we show that astrocytes control viral replication of different TBEV strains, JEV, WNV, and ZIKV. In contrast to fibroblast, astrocytes mount a rapid interferon response and restrict viral spread. Furthermore, basal expression levels of key interferon-stimulated genes are high in astrocytes compared to mouse embryonic fibroblasts. Bioinformatic analysis of RNA-sequencing data reveals that astrocytes have established a basal antiviral state which contributes to the rapid viral recognition and upregulation of interferons. The most highly upregulated pathways in neighboring cells were linked to type I interferon response and innate immunity. The restriction in viral growth was dependent on interferon signaling, since loss of the interferon receptor, or its blockade in wild-type cells, resulted in high viral replication and virus-induced cytopathic effects. Astrocyte supernatant from TBEV-infected cells can restrict TBEV growth in astrocytes already 6 h post infection, the effect on neurons is highly reinforced, and astrocyte supernatant from 3 h post infection is already protective. Conclusions: These findings suggest that the combination of an intrinsic constitutive antiviral response and the fast induction of type I IFN production by astrocytes play an important role in self-protection of astrocytes and suppression of flavivirus replication in the CNS.

  • 10.
    Panayiotou, Christakis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Kurhade, Chaitanya
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Vonderstein, Kirstin
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Pasto, Jenny
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Edlund, Karin
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Upadhyay, Arunkumar S.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Viperin restricts Zika virus and tick-borne encephalitis virus replication by targeting NS3 for proteasomal degradation2018Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 92, nr 7, artikel-id e02054-17Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Flaviviruses are arthropod-borne viruses that constitute a major global health problem, with millions of human infections annually. Their pathogenesis ranges from mild illness to severe manifestations such as hemorrhagic fever and fatal encephalitis. Type I interferons (IFNs) are induced in response to viral infection and stimulate the expression of interferon-stimulated genes (ISGs), including that encoding viperin (virus-inhibitory protein, endoplasmic reticulum associated, IFN inducible), which shows antiviral activity against a broad spectrum of viruses, including several flaviviruses. Here we describe a novel antiviral mechanism employed by viperin against two prominent flaviviruses, tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin was found to interact and colocalize with the structural proteins premembrane (prM) and envelope (E) of TBEV, as well as with nonstructural (NS) proteins NS2A, NS2B, and NS3. Interestingly, viperin expression reduced the NS3 protein level, and the stability of the other interacting viral proteins, but only in the presence of NS3. We also found that although viperin interacted with NS3 of mosquito-borne flaviviruses (ZIKV, Japanese encephalitis virus, and yellow fever virus), only ZIKV was sensitive to the antiviral effect of viperin. This sensitivity correlated with viperin's ability to induce proteasome-dependent degradation of NS3. ZIKV and TBEV replication was rescued completely when NS3 was overexpressed, suggesting that the viral NS3 is the specific target of viperin. In summary, we present here a novel antiviral mechanism of viperin that is selective for specific viruses in the genus Flavivirus, affording the possible availability of new drug targets that can be used for therapeutic intervention.

    IMPORTANCE Flaviviruses are a group of enveloped RNA viruses that cause severe diseases in humans and animals worldwide, but no antiviral treatment is yet available. Viperin, a host protein produced in response to infection, effectively restricts the replication of several flaviviruses, but the exact molecular mechanisms have not been elucidated. Here we have identified a novel mechanism employed by viperin to inhibit the replication of two flaviviruses: tick-borne encephalitis virus (TBEV) and Zika virus (ZIKV). Viperin induced selective degradation via the proteasome of TBEV and ZIKV non-structural 3 (NS3) protein, which is involved in several steps of the viral life cycle. Furthermore, viperin also reduced the stability of several other viral proteins in a NS3-dependent manner, suggesting a central role of NS3 in viperin's antiflavivirus activity. Taking the results together, our work shows important similarities and differences among the members of the genus Flavivirus and could lead to the possibility of therapeutic intervention.

  • 11.
    Weber, Elvira
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Finsterbusch, Katja
    Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    Lindquist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Nair, Sharmila
    Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    Lienenklaus, Stefan
    Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    Gekara, Nelson O
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Janik, Dirk
    Institute of Pathology, Helmholtz Center Munich, Neuherberg, Germany.
    Weiss, Siegfried
    Department of Molecular Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    Kalinke, Ulrich
    Institute for Experimental Infection Research, TWINCORE, Hannover, Germany.
    Överby, Anna K
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Kröger, Andrea
    Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany.
    Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses2014Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 89, nr 21, s. 12202-12212Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Vector-borne flaviviruses, such as tick-borne encephalitis virus (TBEV), West Nile virus, and dengue virus, cause millions of infections in humans. TBEV causes a broad range of pathological symptoms, ranging from meningitis to severe encephalitis or even hemorrhagic fever, with high mortality. Despite the availability of an effective vaccine, the incidence of TBEV infections is increasing. Not much is known about the role of the innate immune system in the control of TBEV infections. Here, we show that the type I interferon (IFN) system is essential for protection against TBEV and Langat virus (LGTV) in mice. In the absence of a functional IFN system, mice rapidly develop neurological symptoms and succumb to LGTV and TBEV infections. Type I IFN system deficiency results in severe neuroinflammation in LGTV-infected mice, characterized by breakdown of the blood-brain barrier and infiltration of macrophages into the central nervous system (CNS). Using mice with tissue-specific IFN receptor deletions, we show that coordinated activation of the type I IFN system in peripheral tissues as well as in the CNS is indispensable for viral control and protection against virus induced inflammation and fatal encephalitis. IMPORTANCE: The type I interferon (IFN) system is important to control viral infections; however, the interactions between tick-borne encephalitis virus (TBEV) and the type I IFN system are poorly characterized. TBEV causes severe infections in humans that are characterized by fever and debilitating encephalitis, which can progress to chronic illness or death. No treatment options are available. An improved understanding of antiviral innate immune responses is pivotal for the development of effective therapeutics. We show that type I IFN, an effector molecule of the innate immune system, is responsible for the extended survival of TBEV and Langat virus (LGTV), an attenuated member of the TBE serogroup. IFN production and signaling appeared to be essential in two different phases during infection. The first phase is in the periphery, by reducing systemic LGTV replication and spreading into the central nervous system (CNS). In the second phase, the local IFN response in the CNS prevents virus-induced inflammation and the development of encephalitis.

  • 12.
    Weber, Elvira
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Finsterbusch, Katja
    Lindqvist, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Kroger, Andrea
    Överby, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Virologi.
    Type I interferon protects against lethal Langat virus infection2013Ingår i: Cytokine, ISSN 1043-4666, E-ISSN 1096-0023, Vol. 63, nr 3, s. 308-308Artikel i tidskrift (Övrigt vetenskapligt)
  • 13.
    Yau, Wai-Lok
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nguyen-Dinh, Van
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Larsson, Elin
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Lindquist, Richard
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Lundmark, Richard
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Model System for the Formation of Tick-Borne Encephalitis Virus Replication Compartments without Viral RNA Replication2019Ingår i: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 93, nr 18, artikel-id e00292-19Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Flavivirus is a positive-sense, single-stranded RNA viral genus, with members causing severe diseases in humans such as tick-borne encephalitis, yellow fever, and dengue fever. Flaviviruses are known to cause remodeling of intracellular membranes into small cavities, where replication of the viral RNA takes place. Nonstructural (NS) proteins are not part of the virus coat and are thought to participate in the formation of these viral replication compartments (RCs). Here, we used tick-borne encephalitis virus (TBEV) as a model for the flaviviruses and developed a stable human cell line in which the expression of NS proteins can be induced without viral RNA replication. The model system described provides a novel and benign tool for studies of the viral components under controlled expression levels. We show that the expression of six NS proteins is sufficient to induce infection-like dilation of the endoplasmic reticulum (ER) and the formation of RC-like membrane invaginations. The NS proteins form a membrane-associated complex in the ER, and electron tomography reveals that the dilated areas of the ER are closely associated with lipid droplets and mitochondria. We propose that the NS proteins drive the remodeling of ER membranes and that viral RNA, RNA replication, viral polymerase, and TBEV structural proteins are not required. IMPORTANCE TBEV infection causes a broad spectrum of symptoms, ranging from mild fever to severe encephalitis. Similar to other flaviviruses, TBEV exploits intracellular membranes to build RCs for viral replication. The viral NS proteins have been suggested to be involved in this process; however, the mechanism of RC formation and the roles of individual NS proteins remain unclear. To study how TBEV induces membrane remodeling, we developed an inducible stable cell system expressing the TBEV NS polyprotein in the absence of viral RNA replication. Using this system, we were able to reproduce RC-like vesicles that resembled the RCs formed in flavivirus-infected cells, in terms of morphology and size. This cell system is a robust tool to facilitate studies of flavivirus RC formation and is an ideal model for the screening of antiviral agents at a lower biosafety level.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf