umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Blanco, Nicolas E.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Guinea-Diaz, Manuel
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Whelan, James
    Strand, Åsa
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status2014In: Philosophical Transactions of the Royal Society of London. Biological Sciences, ISSN 0962-8436, E-ISSN 1471-2970, Vol. 369, no 1640, article id 20130231Article in journal (Refereed)
    Abstract [en]

    Mitochondria and chloroplasts depend upon each other; photosynthesis provides substrates for mitochondrial respiration and mitochondrial metabolism is essential for sustaining photosynthetic carbon assimilation. In addition, mitochondrial respiration protects photosynthesis against photoinhibition by dissipating excess redox equivalents from the chloroplasts. Genetic defects in mitochondrial function result in an excessive reduction and energization of the chloroplast. Thus, it is clear that the activities of mitochondria and plastids need to be coordinated, but the manner by which the organelles communicate to coordinate their activities is unknown. The regulator of alternative oxidase (rao1) mutant was isolated as a mutant unable to induce AOX1a expression in response to the inhibitor of the mitochondrial cytochrome c reductase (complex III), antimycin A. RAO1 encodes the nuclear localized cyclin-dependent kinase E1 (CDKE1). Interestingly, the rao1 mutant demonstrates a genome uncoupled phenotype also in response to redox changes in the photosynthetic electron transport chain. Thus, CDKE1 was shown to regulate both LIGHT HARVESTING COMPLEX B (LHCB) and ALTERNATIVE OXIDASE 1 (AOX1a) expression in response to retrograde signals. Our results suggest that CDKE1 is a central nuclear component integrating mitochondrial and plastid retrograde signals and plays a role in regulating energy metabolism during the response to stress.

  • 2.
    Guinea Diaz, Manuel
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Hernandez-Verdeja, Tamara
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Kremnev, Dmitry
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Crawford, Tim
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Dubreuil, Carole
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Strand, Åsa
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana2018In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 9, article id 50Article in journal (Refereed)
    Abstract [en]

    Activation of the plastid-encoded RNA polymerase is tightly controlled and involves a network of phosphorylation and, as yet unidentified, thiol-mediated events. Here, we characterize PLASTID REDOX INSENSITIVE2, a redox-regulated protein required for full PEP-driven transcription. PRIN2 dimers can be reduced into the active monomeric form by thioredoxins through reduction of a disulfide bond. Exposure to light increases the ratio between the monomeric and dimeric forms of PRIN2. Complementation of prin2-2 with different PRIN2 protein variants demonstrates that the monomer is required for light-activated PEP-dependent transcription and that expression of the nuclear-encoded photosynthesis genes is linked to the activity of PEP. Activation of PEP during chloroplast development likely is the source of a retrograde signal that promotes nuclear LHCB expression. Thus, regulation of PRIN2 is the thiol-mediated mechanism required for full PEP activity, with PRIN2 monomerization via reduction by TRXs providing a mechanistic link between photosynthetic electron transport and activation of photosynthetic gene expression.

  • 3.
    Kremnev, Dmitry
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Guinea Diaz, Manuel
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Dubreuil, Carole
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Strand, Åsa
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Redox regulation of PEP activity during seedling development in ArabidopsisManuscript (preprint) (Other academic)
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf