umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Axner, Ove
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Foltynowicz, Aleksandra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    NICE-OHMS – frequency modulation cavity-enhanced spectroscopy: principles and performance2014Ingår i: Cavity-Enhanced Spectroscopy and Sensing / [ed] Gianluca Gagliardi and Hans-Peter Loock, Berlin: Springer Berlin/Heidelberg, 2014, s. 221-251Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a sensitive technique for detection of molecular species in gas phase. It is based on a combination of frequency modulation for reduction of noise and cavity enhancement for prolongation of the interaction length between the light and a sample. It is capable of both Doppler-broadened and sub-Doppler detection with absorption sensitivity down to the 10−12 and 10−14 Hz−1/2 cm−1 range, respectively. This chapter provides a thorough description of the basic principles and the performance of the technique.

  • 2.
    Axner, Ove
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Foltynowicz-Matyba, Aleksandra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    NICE-OHMS – Frequency modulation cavity-enhanced spectroscopy: principles and performanceManuskript (preprint) (Övrigt vetenskapligt)
  • 3.
    Ehlers, Patrick
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry instrumentation for Doppler-broadened detection in the 10-12 cm-1 Hz-1/2 region2012Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 29, nr 6, s. 1305-1315Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry (FL-NICE-OHMS) system for white-noise-limited Doppler-broadened detection down to 5.6 x 10(-12) cm(-1) Hz(-1/2) is demonstrated. The system is based on a previous FL-NICE-OHMS instrumentation in which the locking of the laser frequency to a cavity mode has been improved by the use of an acousto-optic modulator (AOM) and provision of a more stable environment by the employment of a noise-isolating enclosed double-layer table, a temperature regulation of the laboratory, and an ultra-high-vacuum (UHV) gas system. White-noise behavior up to 10 s provides the instrument with a minimum detectable on-resonance absorbance per unit length of 1.8 x 10(-12) cm(-1) and a relative single-pass absorption (Delta I/I) of 7.2 x 10(-11). The system was applied to detection of acetylene on a transition at 1531.588 nm, yielding a detection sensitivity of C2H2 in atmospheric pressure gas of 4 ppt (measured over 10 s). (C) 2012 Optical Society of America

  • 4.
    Ehlers, Patrick
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Foltynowicz, Aleksandra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry incorporating an optical circulator2014Ingår i: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 39, nr 2, s. 279-282Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    To reduce the complexity of fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry, a system incorporating a fiber-coupled optical circulator to deflect the cavity-reflected light for laser stabilization has been realized. Detection near the shot-noise limit has been demonstrated for both Doppler-broadened and sub-Doppler signals, yielding a lowest detectable absorption and optical phase shift of 2.2 x 10(-12) cm(-1) and 4.0 x 10(-12) cm(-1), respectively, both for a 10 s integration time, where the former corresponds to a detection limit of C2H2 of 5 ppt. (C) 2014 Optical Society of America

  • 5.
    Ehlers, Patrick
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Doppler broadened NICE-OHMS beyond the triplet formalism: assessment of optimum modulation index2014Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 31, nr 7, s. 1499-1507Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The dependence of Doppler broadened noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) on the modulation index, beta, has been investigated experimentally on C2H2 and CO2, both in the absence and the presence of optical saturation. It is shown that the maximum signals are obtained for beta that produce more than one pair of sidebands: in the Doppler limit and for the prevailing conditions (unsaturated transition and the pertinent modulation frequency and Doppler widths) around 1 and 1.4 for the dispersion and absorption detection phases, respectively. The results verify predictions given in an accompanying work. It is also shown that there is no substantial broadening of the NICE-OHMS signal for beta < 1. The use of beta of unity has yielded a Db-NICE-OHMS detection sensitivity of 4.9 x 10(-12) cm(-1) Hz(-1/2), which is the lowest (best) value so far achieved for NICE-OHMS based on a tunable laser. The number of sidebands that needs to be included in fits of the line-shape function to obtain good accuracy has been assessed. It is concluded that it is enough to consider three pairs of sidebands whenever the systematic errors in a concentration assessment should be below 1% when beta < 2 are used and <1 parts per thousand for beta < 1.5.

  • 6.
    Foltynowicz, Aleksandra
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Distributed-feedback-laser-based NICE-OHMS
in the pressure-broadened regime2010Ingår i: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 18, nr 18, s. 18580-18591Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A compact noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) system based on a narrow linewidth distributed-feedback laser and fiber-coupled acousto-optic and electro-optic modulators has been developed. Measurements of absorption and dispersion signals have been performed at pressures up to 1/3 atmosphere on weak acetylene transitions at 1551 nm. Multiline fitting routines were implemented to obtain transition parameters, i.e., center frequencies, linestrengths, and pressure broadening coefficients. The signal strength was shown to be linear with pressure and concentration, and independent of detection phase. The minimum detectable on-resonance absorption with a cavity with a finesse of 460 was 2 × 10−10 cm−1 for 1 minute of integration time.

  • 7.
    Silander, Isak
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk2012Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 29, nr 5, s. 916-923Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Frequency modulated spectroscopy (FMS) performed by the use of fiber-coupled electro optic modulators (FC-EOMs) is often plagued by background signals that bring in noise and, by their temperature dependence, cause severe drifts. These signals cannot be zeroed out by the conventional technique of using a carefully adjusted polarizer that can be applied to free space electro optic modulators (EOMs). This can limit the use of FC-EOMs in high performance detection techniques. Here we provide an explanation to these background signals that is based upon crosstalk between various polarization directions of light in the fixed mounted polarization-maintaining fibers and the electro optic crystal. The description provides a basis for the previously demonstrated technique that utilizes an EOM regulated simultaneously by temperature and DC voltage to eliminate background signals from systems encompassing FC-EOMs. (C) 2012 Optical Society of America

  • 8.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Dicke narrowing and speed-dependent effects in dispersion signals: Influence on assessment of concentration and spectral parameters by noise-immune cavity-enhanced optical heterodyne molecular spectrometry2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Laser spectroscopic techniques have, during the last decades, demonstrated an extraordinary capability for sensitive detection of molecular constituents in gas phase. Since spectra from such techniques constitute unique and characteristic signatures for each type of species, these techniques enable investigations of molecular structures as well as detection of the presence of species in a gas mixture. They are therefore used for a variety of application, from fundamental studies to the assessment of gas concentrations. In fact, quantitative assessments of gas concentrations by laser-based techniques are constantly gaining in popularity, primarily due to properties such as high sensitivity and selectivity and an ability to perform non-invasive measurement. Moreover, investigations of isolated molecular transitions under different conditions provide excellent means to obtain a comprehensive understanding of spectral broadening mechanisms, which is of importance for, for example, environmental sciences and remote sensing applications. In fundamental studies, spectroscopic parameters are often retrieved from fits of a model function of the technique used, which in turn is based upon a suitable lineshape function. In order to obtain parameter values with highest possible accuracy, it is of importance to use the lineshape model that most correctly can predict the measured spectra. Even though the Voigt function is the most commonly used lineshape model when both Doppler and collision broadenings are present, it is not always suitable when spectroscopic parameters are to be assessed with high precision.

    This thesis represents a thorough investigation of Dicke narrowing and speed-dependent effects, which are phenomena that are not accounted for by the conventional Voigt profile. For the first time, it is demonstrated that both these effects take place not only in absorption but also in the dispersion mode of detection. Their dispersion lineshape functions are first theoretically presumed and explicitly given before they are validated experimentally by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS). By using the models developed, it is also shown that although the two modes of detection, absorption and dispersion, both can provide good quality of fits, they do not always provide identical spectroscopic parameters. A detailed analysis under which conditions they do so, and subsequent recommendations of their use, are presented.

    It also describes the instrumental implementation of a distributed-feed-back (DFB) laser-based NICE-OHMS instrumentation, which constitutes an important step towards the further development of this technique. Due to the wide tunability of the DFB laser, the setup is capable of extending the working range of NICE-OHMS into the collision broadening region, which, in turn, allows for precise spectroscopic studies. The use of a fiber-coupled DFB laser also provides a compact NICE-OHMS system. The minimum detectable on-resonance absorption was assessed to 2× 10-10 cm-1 for a 70 s integration time.

  • 9.
    Wang, Junyang
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Dicke narrowing in the dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectroscopy-theory and experimental verification2011Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 28, nr 10, s. 2390-2401Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Dicke narrowing in both the absorption and dispersion modes of detection have been scrutinized by noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) using an isolated transition in the v(1) + v(3) + v(4)(1) - v(4)(1) band of acetylene [P(e)(33) at 6439.371 cm(-1)] at room temperature. The results represent the first (to our knowledge) demonstration of Dicke narrowing detected in dispersion, as well as by NICE-OHMS, and the paper provides thereby the first comparison of the Dicke narrowing phenomenon for the two modes of detection. It is shown that Dicke narrowing in dispersion can be described by the dispersive counterparts to the conventional Galatry and Rautian absorption line-shape functions, which are explicitly given. Spectroscopic parameters for the targeted transition were extracted in both absorption and dispersion and found to be in agreement with those previously reported for other lines and bands. The shortcomings of the Galatry model to provide physically relevant parameters in this pressure range are discussed.

  • 10.
    Wang, Junyang
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    On the accuracy of the assessment of molecular concentration and spectroscopic parameters by frequency modulation spectrometry and NICE-OHMS2014Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 136, s. 28-44Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Frequency modulation spectrometry (FMS), and thereby also noise immune cavity enhanced optical heterodyne molecular spectrometry (NICE-OHMS), can detect both absorption and dispersion signals, and can therefore, by curve fitting, extract molecular parameters from both these types of signals. However, parameters evaluated from the two modes of detection have been previously shown not to be identical. Their accuracy is affected by both the type of lineshape used by the fit and the accuracy of the detection phase. A thorough study is presented of the influence of three lineshape functions [Voigt, Rautian, and speed-dependent Voigt (SDV)] and errors in the detection phase on the retrieval of various molecular parameters, in particular the signal strength, which provides information about the concentration of molecules in a gas, from reference spectra in the 10-260 Torr region. It was found that for data detected and evaluated at pure absorption or dispersion phase by a system calibrated in the Doppler limit the signal strength can be underestimated at higher pressures by up to 45% if the evaluation is made using the Voigt profile. If the detection is plagued by phase errors additional inaccuracies, often in the order of percent per degree phase error (%/deg), can occur. More reliable parameters can be obtained if an appropriate lineshape function is used and the detection phase is considered a free parameter. However, despite this, none of the evaluation procedures can retrieve the molecular parameters fully correctly; the most accurate assessments of the signal strength, obtained when the data is detected close to absorption phase and evaluated by the SDV lineshape function, are still associated with an error of a few percent. (C) 2013 Elsevier Ltd. All rights reserved.

  • 11.
    Wang, Junyang
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Speed-dependent effects in dispersion mode of detection and in noise-immune cavity-enhanced optical heterodyne molecular spectrometry: experimental demonstration and validation of predicted line shape2012Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 29, nr 10, s. 2980-2989Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Speed-dependent effects (SDEs) in both the absorption and dispersion modes of detection have been detected and scrutinized by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) technique. The present paper achieves four objectives: (i) it provides the first demonstration of SDEs detected in dispersion, (ii) it validates the expression for a speed-dependent Voigt (SDV) dispersion line-shape function that is derived in an accompanying paper, (iii) it illustrates the influence of SDEs on the NICE-OHMS technique, and (iv) it gives the first experimental comparison of SDEs for the absorption and dispersion modes of detection. Experiments were performed using an isolated transition in the v(1) + v(3) + v(4)(1) - v(4)(1) band of acetylene [P-e (33) at 6439.371 cm(-1)] in the 100-250 Torr range at room temperature. It is shown that SDEs appear in both the absorption and dispersion modes of detection, that they can be well described by the suggested SDV dispersion line-shape function, and that they need to be taken into account if NICE-OHMS signals detected under optimal pressures are to be properly assessed. (c) 2012 Optical Society of America

  • 12.
    Wang, Junyang
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Ehlers, Patrick
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Silander, Isak
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Westberg, Jonas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Speed-dependent Voigt dispersion line-shape function: applicable to techniques measuring dispersion signals2012Ingår i: Journal of the Optical Society of America. B, Optical physics, ISSN 0740-3224, E-ISSN 1520-8540, Vol. 29, nr 10, s. 2971-2979Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    An analytical expression for a Voigt dispersion line-shape function that incorporates speed-dependent effects (SDEs) on the collision broadening, applicable to spectroscopic techniques that measure dispersion signals, is presented. It is based upon a speed-dependent Voigt (SDV) model for absorption spectrometry that assumes that the molecular relaxation rate has a quadratic dependence on molecular speed. The expression is validated theoretically in the limit of small SDEs by demonstration that it reverts to the ordinary Voigt dispersion line-shape function and experimentally in a separate work by experiments performed by the noise-immune cavity-enhanced optical heterodyne molecular spectrometry technique. A comparison is given between the SDEs in the SDV absorption and dispersion line-shape functions. It is shown that both line shapes are affected significantly but differently by SDEs. The expression derived provides, for the first time to our knowledge, a possibility also for the techniques that measure dispersion signals to handle SDEs. (c) 2012 Optical Society of America

  • 13.
    Westberg, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fast and non-approximate methodology for calculation of wavelength-modulated Voigt lineshape functions suitable for real-time curve fitting2012Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 113, nr 16, s. 2049-2057Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Wavelength modulation (WM) produces lock-in signals that are proportional to various Fourier coefficients of the modulated lineshape function of the molecular transition targeted. Unlike the case for the Lorentzian lineshape function, there is no known analytical expression for the Fourier coefficients of a modulated Voigt lineshape function; they consist of nested integrals that have to be solved numerically, which is often time-consuming and prevents real-time curve fitting. Previous attempts to overcome these limitations have so far consisted of approximations of the Voigt lineshape function, which brings in inaccuracies. In this paper we demonstrate a new means to calculate the lineshape of nf-WM absorption signals from a transition with a Voigt profile. It is shown that the signal can conveniently be expressed as a convolution of one or several Fourier coefficients of a modulated Lorentzian lineshape function, for which there are analytical expressions, and the Maxwell-Boltzmann velocity distribution for the system under study. Mathematically, the procedure involves no approximations, wherefore its accuracy is limited only by the numerical precision of the software used (in this case similar to 10(-16)) while the calculation time is reduced by roughly three orders of magnitude (10(-3)) as compared to the conventional methodology, i.e. typically from the second to the millisecond range. This makes feasible real-time curve fitting to lock-in output signals from modulated Voigt profiles. (C) 2012 Elsevier Ltd. All rights reserved.

  • 14.
    Westberg, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Wang, Junyang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Methodology for fast curve fitting to modulated Voigt dispersion lineshape functions2014Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 133, s. 244-250Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Faraday rotation spectroscopy (FAMOS) as well as other modulated techniques that rely on dispersion produce lock-in signals that are proportional to various Fourier coefficients of modulated dispersion lineshape functions of the molecular transition targeted. In order to enable real-time curve fitting to such signals a fast methodology for calculating the Fourier coefficients of modulated lineshape functions is needed. Although there exist an analytical expression for such Fourier coefficients of modulated Lorentzian absorption and dispersion lineshape functions, there is no corresponding expression for a modulated Voigt dispersion function. The conventional computational route of such Fourier coefficients has therefore so far either consisted of using various approximations to the modulated Voigt lineshape function or solving time-consuming integrals, which has precluded accurate real-time curve fitting. Here we present a new methodology to calculate Fourier coefficients of modulated Voigt dispersion lineshape functions that is significantly faster (several orders of magnitude) and more accurate than previous approximative calculation procedures, which allows for real-time curve fitting to FAMOS signals also in the Voigt regime.

1 - 14 av 14
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf