umu.sePublikasjoner
Endre søk
Begrens søket
1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bellini, Catherine
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Institut Jean-Pierre Bourgin, UMR 1318 INRA-AgroParisTech, Versailles, France.
    Pacurar, Daniel I
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Perrone, Irene
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Adventitious roots and lateral roots: similarities and differences2014Inngår i: Annual Review of Plant Biology, ISSN 1543-5008, E-ISSN 1545-2123, Vol. 65, s. 639-666Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In addition to its role in water and nutrient uptake, the root system is fundamentally important because it anchors a plant to its substrate. Although a wide variety of root systems exist across different species, all plants have a primary root (derived from an embryonic radicle) and different types of lateral roots. Adventitious roots, by comparison, display the same functions as lateral roots but develop from aerial tissues. In addition, they not only develop as an adaptive response to various stresses, such as wounding or flooding, but also are a key limiting component of vegetative propagation. Lateral and adventitious roots share key elements of the genetic and hormonal regulatory networks but are subject to different regulatory mechanisms. In this review, we discuss the developmental processes that give rise to lateral and adventitious roots and highlight knowledge acquired over the past few years about the mechanisms that regulate adventitious root formation.

  • 2.
    Gutierrez, Laurent
    et al.
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Bussell, John D
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Pacurar, Daniel I
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Schwambach, Josèli
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Pacurar, Monica
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Bellini, Catherine
    Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of Auxin response factor transcripts and microRNA abundance2009Inngår i: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 21, nr 10, s. 3119-3132Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The development of shoot-borne roots, or adventitious roots, is indispensable for mass propagation of elite genotypes. It is a complex genetic trait with a high phenotypic plasticity due to multiple endogenous and environmental regulatory factors. We demonstrate here that a subtle balance of activator and repressor AUXIN RESPONSE FACTOR (ARF) transcripts controls adventitious root initiation. Moreover, microRNA activity appears to be required for fine-tuning of this process. Thus, ARF17, a target of miR160, is a negative regulator, and ARF6 and ARF8, targets of miR167, are positive regulators of adventitious rooting. The three ARFs display overlapping expression domains, interact genetically, and regulate each other's expression at both transcriptional and posttranscriptional levels by modulating miR160 and miR167 availability. This complex regulatory network includes an unexpected feedback regulation of microRNA homeostasis by direct and nondirect target transcription factors. These results provide evidence of microRNA control of phenotypic variability and are a significant step forward in understanding the molecular mechanisms regulating adventitious rooting.

  • 3. Gutierrez, Laurent
    et al.
    Mongelard, Gaelle
    Flokova, Kristyna
    Pacurar, Daniel I.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Novak, Ondrej
    Staswick, Paul
    Kowalczyk, Mariusz
    Pacurar, Monica
    Demailly, Herve
    Geiss, Gaia
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Auxin Controls Arabidopsis Adventitious Root Initiation by Regulating Jasmonic Acid Homeostasis2012Inngår i: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 24, nr 6, s. 2515-2527Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.

  • 4.
    Lakehal, Abdellah
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Chaabouni, Salma
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Cavel, Emilie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Le Hir, Rozenn
    Ranjan, Alok
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Rahneshan, Zahra
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Novák, Ondřej
    Pacurar, Daniel I
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Perrone, Irene
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Jobert, François
    Gutierrez, Laurent
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    A Molecular Framework for the Control of Adventitious Rooting by TIR1/AFB2-Aux/IAA-Dependent Auxin Signaling in Arabidopsis2019Inngår i: Molecular Plant, ISSN 1674-2052, E-ISSN 1752-9867, Vol. 12, nr 11, s. 1499-1514Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.

  • 5.
    Pacurar, Daniel I
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Pacurar, Monica L.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania.
    Pacurar, Andrea M.
    Faculty of Horticulture, University of Agricultural Sciences and Veterinary Medicine, Cluj Napoca, Romania.
    Gutierrez, Laurent
    Molecular biology platform (CRRBM), Université de Picardie Jules Verne, Amiens, France.
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Institut Jean-Pierre Bourgin, French National Institute for Agricultural Research (UMR1318 INRA-AgroParisTech), Versailles, France.
    Novel viable allele of Arabidopsis CULLIN1 identified in a screen for superroot2 suppressors by next generation sequencing-assisted mapping2014Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, nr 6, s. e100846-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Map-based cloning (MBC) is the conventional approach for linking phenotypes to genotypes, and has been successfully used to identify causal mutations in diverse organisms. Next-generation sequencing (NGS) technologies offer unprecedented possibilities to sequence the entire genomes of organisms, thereby in principle enabling direct identification of causal mutations without mapping. However, although mapping-by-sequencing has proven to be a cost effective alternative to classical MBC in particular situations, methods based solely on NGS still have limitations and need to be refined. Aiming to identify the causal mutations in suppressors of Arabidopsis thaliana superroot2 phenotype, generated by ethyl methane sulfonate (EMS) treatment, we combined NGS and classical mapping, to rapidly identify the point mutations and restrict the number of testable candidates by defining the chromosomal intervals containing the causal mutations, respectively. The NGS-assisted mapping approach we describe here facilitates unbiased identification of virtually any causal EMS-generated mutation by overlapping the identification (deep sequencing) and validation (mapping) steps. To exemplify the useful marriage of the two approaches we discuss the strategy used to identify a new viable recessive allele of the Arabidopsis CULLIN1 gene in the non-reference Wassilewskija (Ws-4) accession.

  • 6.
    Pacurar, Daniel I.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Thordal-Christensen, Hans
    Pacurar, Monica L.
    Pamfil, Doru
    Botez, Constantin
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Agrobacterium tumefaciens: From crown gall tumors to genetic transformation2011Inngår i: Physiological and molecular plant pathology, ISSN 0885-5765, E-ISSN 1096-1178, Vol. 76, nr 2, s. 76-81Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    The phytopathogenic bacterium Agrobacterium tumefaciens is the causative agent of crown gall disease on a broad range of plant species. For more than a century this pathogen has fascinated biologists for various reasons. It has been believed that disclosing the mystery of the crown gall tumour disease in plants might help to understand the mechanisms of oncogenesis in general, and eventually use this knowledge to cure cancer in animals and humans. However, as the performer of the only known case of trans-kingdom DNA transfer, this natural genetic engineer is recognised by nowadays biologists particularly for this feature, and Agrobacterium-mediated genetic transformation has become the preferred method to generate transgenic plants. This review briefly highlights the key steps in DNA transfer during natural A. tumefaciens infection and the subsequent development of crown gall disease. It will focus on the adaptation and use of this proof of principle for the purpose of genetic transformation.

    (C) 2011 Elsevier Ltd. All rights reserved.

  • 7.
    Pacurar, Daniel Ioan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania.
    Pacurar, Monica Lacramioara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania & Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Bussell, John Desmond
    Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden & Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia.
    Schwambach, Joseli
    Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden & V.
    Pop, Tiberia Ioana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania.
    Kowalczyk, Mariusz
    Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Gutierrez, Laurent
    Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden & Université de Picardie Jules Verne, CRRBM & BIOPI EA3900, 80039 Amiens, France.
    Cavel, Emilie
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Chaabouni, Salma
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Ljung, Karin
    Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
    Fett-Neto, Arthur Germano
    Centro de Biotecnologia, Laboratório de Fisiologia Vegetal, Universidade Federal do Rio Grande do Sul, 9500, CP15005, CEP 91501–970, Porto Alegre, RS, Brazil.
    Pamfil, Doru
    University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania.
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech 78026 Versailles Cedex, France.
    Identification of new adventitious rooting mutants amongst suppressors of the Arabidopsis thaliana superroot2 mutation2014Inngår i: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 65, nr 6, s. 1605-1618Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The plant hormone auxin plays a central role in adventitious rooting and is routinely used with many economically important, vegetatively propagated plant species to promote adventitious root initiation and development on cuttings. Nevertheless the molecular mechanisms through which it acts are only starting to emerge. The Arabidopsis superroot2-1 (sur2-1) mutant overproduces auxin and, as a consequence, develops excessive adventitious roots in the hypocotyl. In order to increase the knowledge of adventitious rooting and of auxin signalling pathways and crosstalk, this study performed a screen for suppressors of superroot2-1 phenotype. These suppressors provide a new resource for discovery of genetic players involved in auxin signalling pathways or at the crosstalk of auxin and other hormones or environmental signals. This study reports the identification and characterization of 26 sur2-1 suppressor mutants, several of which were identified as mutations in candidate genes involved in either auxin biosynthesis or signalling. In addition to confirming the role of auxin as a central regulator of adventitious rooting, superroot2 suppressors indicated possible crosstalk with ethylene signalling in this process.

  • 8.
    Pacurar, Daniel Ioan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Pacurar, Monica Lacramioara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Lakehal, Abdellah
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Pacurar, Andrea Mariana
    Ranjan, Alok
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    The Arabidopsis Cop9 signalosome subunit 4 (CNS4) is involved in adventitious root formation2017Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikkel-id 628Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

  • 9.
    Pacurar, Daniel Ioan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Pacurar, Monica Lacramioara
    Street, Nathaniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bussell, John Desmond
    Pop, Tiberia Ioana
    Gutierrez, Laurent
    Bellini, Catherine
    A collection of INDEL markers for map-based cloning in seven Arabidopsis accessions2012Inngår i: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 63, nr 7, s. 2491-2501Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The availability of a comprehensive set of resources including an entire annotated reference genome, sequenced alternative accessions, and a multitude of marker systems makes Arabidopsis thaliana an ideal platform for genetic mapping. PCR markers based on INsertions/DELetions (INDELs) are currently the most frequently used polymorphisms. For the most commonly used mapping combination, ColumbiaxLandsberg erecta (Col-0xLer-0), the Cereon polymorphism database is a valuable resource for the generation of polymorphic markers. However, because the number of markers available in public databases for accessions other than Col-0 and Ler-0 is extremely low, mapping using other accessions is far from straightforward. This issue arose while cloning mutations in the Wassilewskija (Ws-4) background. In this work, approaches are described for marker generation in Ws-4 x Col-0. Complementary strategies were employed to generate 229 INDEL markers. Firstly, existing Col-0/Ler-0 Cereon predicted polymorphisms were mined for transferability to Ws-4. Secondly, Ws-0 ecotype Illumina sequence data were analyzed to identify INDELs that could be used for the development of PCR-based markers for Col-0 and Ws-4. Finally, shotgun sequencing allowed the identification of INDELs directly between Col-0 and Ws-4. The polymorphism of the 229 markers was assessed in seven widely used Arabidopsis accessions, and PCR markers that allow a clear distinction between the diverged Ws-0 and Ws-4 accessions are detailed. The utility of the markers was demonstrated by mapping more than 35 mutations in a Col-0xWs-4 combination, an example of which is presented here. The potential contribution of next generation sequencing technologies to more traditional map-based cloning is discussed.

  • 10.
    Pacurar, Daniel Ioan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Perrone, Irene
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. SLU.
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles Cedex, France.
    Auxin is a central player in the hormone cross-talks that control adventitious rooting2014Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 151, nr 1, s. 83-96Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Vegetative propagation of economically important woody, horticultural and agricultural species rely on an efficient adventitious root (AR) formation. The formation of ARs is a complex genetic trait regulated by the interaction of environmental and endogenous factors among which the phytohormone auxin plays an essential role. This article summarizes the current knowledge related to the intricate network through which auxin controls adventitious rooting. How auxin and recently identified auxin-related compounds affect AR formation in different plant species is discussed. Particular attention is addressed to illustrate how auxin has a central role in the hormone cross-talk leading to AR development. In parallel, we describe the molecular players involved in the control of auxin homeostasis, transport and signaling, for a better understanding of the auxin action during adventitious rooting.

1 - 10 of 10
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf