umu.sePublikasjoner
Endre søk
Begrens søket
1 - 21 of 21
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Burman, Erik
    et al.
    Elfverson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Hansbo, Peter
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    A cut finite element method for the Bernoulli free boundary value problem2017Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 317, s. 598-618Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a cut finite element method for the Bernoulli free boundary problem. The free boundary, represented by an approximate signed distance function on a fixed background mesh, is allowed to intersect elements in an arbitrary fashion. This leads to so called cut elements in the vicinity of the boundary. To obtain a stable method, stabilization terms are added in the vicinity of the cut elements penalizing the gradient jumps across element sides. The stabilization also ensures good conditioning of the resulting discrete system. We develop a method for shape optimization based on moving the distance function along a velocity field which is computed as the H-1 Riesz representation of the shape derivative. We show that the velocity field is the solution to an interface problem and we prove an a priori error estimate of optimal order, given the limited regularity of the velocity field across the interface, for the velocity field in the H-1 norm. Finally, we present illustrating numerical results.

  • 2.
    Burman, Erik
    et al.
    University College London, UK, Department of Mathematics.
    Elfverson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Hansbo, Peter
    Jönköping University, School of Engineering, JTH, Product Development.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut topology optimization for linear elasticity with coupling to parametric nondesign domain regions2019Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 350, s. 462-479Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a density based topology optimization method for linear elasticity based on the cut finite element method. More precisely, the design domain is discretized using cut finite elements which allow complicated geometry to be represented on a structured fixed background mesh. The geometry of the design domain is allowed to cut through the background mesh in an arbitrary way and certain stabilization terms are added in the vicinity of the cut boundary, which guarantee stability of the method. Furthermore, in addition to standard Dirichlet and Neumann conditions we consider interface conditions enabling coupling of the design domain to parts of the structure for which the design is already given. These given parts of the structure, called the nondesign domain regions, typically represents parts of the geometry provided by the designer. The nondesign domain regions may be discretized independently from the design domains using for example parametric meshed finite elements or isogeometric analysis. The interface and Dirichlet conditions are based on Nitsche's method and are stable for the full range of density parameters. In particular we obtain a traction-free Neumann condition in the limit when the density tends to zero.

  • 3.
    Burman, Erik
    et al.
    University College London, UK, Department of Mathematics.
    Elfverson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Hansbo, Peter
    Jönköping University, School of Engineering, JTH, Product Development.
    Larson, Mats
    Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK.
    Larsson, Karl
    Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK.
    Shape optimization using the cut finite element method2018Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 328, s. 242-261Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a cut finite element method for shape optimization in the case of linear elasticity. The elastic domain is defined by a level-set function, and the evolution of the domain is obtained by moving the level-set along a velocity field using a transport equation. The velocity field is the largest decreasing direction of the shape derivative that satisfies a certain regularity requirement and the computation of the shape derivative is based on a volume formulation. Using the cut finite element method no re-meshing is required when updating the domain and we may also use higher order finite element approximations. To obtain a stable method, stabilization terms are added in the vicinity of the cut elements at the boundary, which provides control of the variation of the solution in the vicinity of the boundary. We implement and illustrate the performance of the method in the two-dimensional case, considering both triangular and quadrilateral meshes as well as finite element spaces of different order.

  • 4.
    Burman, Erik
    et al.
    University College London, UK, Department of Mathematics.
    Hansbo, Peter
    Jönköping University, School of Engineering, JTH, Product Development.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Massing, Andre
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Finite element approximation of the Laplace-Beltrami operator on a surface with boundary2019Inngår i: Numerische Mathematik, ISSN 0029-599X, E-ISSN 0945-3245, Vol. 141, nr 1, s. 141-172Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a finite element method for the Laplace–Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly using Nitsche's method. We prove optimal order a priori error estimates for piecewise continuous polynomials of order k ≥ 1 in the energy and L2 norms that take the approximation of the surface and the boundary into account.

  • 5.
    Burman, Erik
    et al.
    University College London, UK, Department of Mathematics.
    Peter, Hansbo
    Jönköping University, School of Engineering, JTH, Product Development.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut finite elements for convection in fractured domains2019Inngår i: Computers & Fluids, ISSN 0045-7930, E-ISSN 1879-0747, Vol. 179, s. 726-734Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a cut finite element method (CutFEM) for the convection problem in a so called fractured domain which is a union of manifolds of different dimensions such that a d dimensional component always resides on the boundary of a d+1 dimensional component. This type of domain can for instance be used to model porous media with embedded fractures that may intersect. The convection problem is formulated in a compact form suitable for analysis using natural abstract directional derivative and divergence operators. The cut finite element method is posed on a fixed background mesh that covers the domain and the manifolds are allowed to cut through a fixed background mesh in an arbitrary way. We consider a simple method based on continuous piecewise linear elements together with weak enforcement of the coupling conditions and stabilization. We prove a priori error estimates and present illustrating numerical examples.

  • 6.
    Elfverson, Daniel
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    A new least squares stabilized Nitsche method for cut isogeometric analysis2019Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 349, s. 1-16Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We derive a new stabilized symmetric Nitsche method for enforcement of Dirichlet boundary conditions for elliptic problems of second order in cut isogeometric analysis (CutIGA). We consider C1 splines and stabilize the standard Nitsche method by adding a certain elementwise least squares terms in the vicinity of the Dirichlet boundary and an additional term on the boundary which involves the tangential gradient. We show coercivity with respect to the energy norm for functions in H2(Ω) and optimal order a priori error estimates in the energy and L2 norms. To obtain a well posed linear system of equations we combine our formulation with basis function removal which essentially eliminates basis functions with sufficiently small intersection with Ω. The upshot of the formulation is that only elementwise stabilization is added in contrast to standard procedures based on ghost penalty and related techniques and that the stabilization is consistent. In our numerical experiments we see that the method works remarkably well in even extreme cut situations using a Nitsche parameter of moderate size.

  • 7.
    Elfverson, Daniel
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    CutIGA with basis function removal2018Inngår i: Advanced Modeling and Simulation in Engineering Sciences, ISSN 2213-7467, Vol. 5, nr 6Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We consider a cut isogeometric method, where the boundary of the domain is allowed to cut through the background mesh in an arbitrary fashion for a second order elliptic model problem. In order to stabilize the method on the cut boundary we remove basis functions which have small intersection with the computational domain. We determine criteria on the intersection which guarantee that the order of convergence in the energy norm is not affected by the removal. The higher order regularity of the B-spline basis functions leads to improved bounds compared to standard Lagrange elements.

  • 8.
    Hansbo, Peter
    et al.
    Jönköping University.
    Jonsson, Tobias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    A Nitsche method for elliptic problems on composite surfaces2017Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 326, s. 505-525Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a finite element method for elliptic partial differential equations on so called composite surfaces that are built up out of a finite number of surfaces with boundaries that fit together nicely in the sense that the intersection between any two surfaces in the composite surface is either empty, a point, or a curve segment, called an interface curve. Note that several surfaces can intersect along the same interface curve. On the composite surface we consider a broken finite element space which consists of a continuous finite element space at each subsurface without continuity requirements across the interface curves. We derive a Nitsche type formulation in this general setting and by assuming only that a certain inverse inequality and an approximation property hold we can derive stability and error estimates in the case when the geometry is exactly represented. We discuss several different realizations, including so called cut meshes, of the method. Finally, we present numerical examples.

  • 9.
    Hansbo, Peter
    et al.
    Jönköping University, School of Engineering, JTH, Product Development.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut Finite Element Methods for Linear Elasticity Problems2018Inngår i: Geometrically Unfitted Finite Element Methods and Applications: Proceedings of the UCL Workshop 2016 / [ed] Stéphane P. A. Bordas; Erik Burman; Mats G. Larson; Maxim A. Olshanskii, Springer, 2018, s. 25-63Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    We formulate a cut finite element method for linear elasticity based on higher order elements on a fixed background mesh. Key to the method is a stabilization term which provides control of the jumps in the derivatives of the finite element functions across faces in the vicinity of the boundary. We then develop the basic theoretical results including error estimates and estimates of the condition number of the mass and stiffness matrices. We apply the method to the standard displacement problem, the frequency response problem, and the eigenvalue problem. We present several numerical examples including studies of thin bending dominated structures relevant for engineering applications. Finally, we develop a cut finite element method for fibre reinforced materials where the fibres are modeled as a superposition of a truss and a Euler-Bernoulli beam. The beam model leads to a fourth order problem which we discretize using the restriction of the bulk finite element space to the fibre together with a continuous/discontinuous finite element formulation. Here the bulk material stabilizes the problem and it is not necessary to add additional stabilization terms.

  • 10.
    Hansbo, Peter
    et al.
    Tekniska Högskolan i Jönköping.
    Larson, Mats G
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Intrinsic finite element modeling of curved beamsManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    In the mid '90s Delfour and Zolesio [4-6] established elasticity models on surfaces described using the signed distance function, an approach they called intrinsic modeling. For problems in codimension-two, e.g. one-dimensional geometries embedded in R3, an analogous description can be done using a vector distance function. In this paper we investigate the intrinsic approach for the modeling of codimension-two problems by deriving a weak formulation for a linear curved beam expressed in three dimensions from the equilibrium equations of linear elasticity. Based on this formulation we implement a finite element model using global degrees of freedom and discuss upon the effects of curvature and locking. Comparisons with classical solutions for both straight and curved cantilever beams under a tip load are given.

  • 11.
    Hansbo, Peter
    et al.
    Högskolan i Jönköping, Tekniska Högskolan, JTH.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Variational formulation of curved beams in global coordinates2014Inngår i: Computational Mechanics, ISSN 0178-7675, E-ISSN 1432-0924, Vol. 53, nr 4, s. 611-623Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In this paper we derive a variational formulation for the static analysis of a linear curved beam natively expressed in global Cartesian coordinates. Using an implicit description of the beam midline during derivation we eliminate the need for local coordinates. The only geometrical information appearing in the final expressions for the governing equations is the tangential direction. As a consequence, zero or discontinuous curvature, for example at inflection points, pose no difficulty in this formulation. Kinematic assumptions encompassing both Timoshenko and Euler–Bernoulli beam theories are considered. With the exception of truly three-dimensional formulations, models for curved beams found in the literature are typically derived in the local Frenet frame. We implement finite element methods with global degrees of freedom and discuss curvature coupling effects and locking. Numerical comparisons with classical solutions for straight and curved cantilever beams under tip load are given, as well as numerical examples illustrating curvature coupling effects.

  • 12.
    Jonsson, Tobias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut finite element methods for elliptic problems on multipatch parametric surfaces2017Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 324, s. 366-394Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a finite element method for the Laplace–Beltrami operator on a surface described by a set of patchwise parametrizations. The patches provide a partition of the surface and each patch is the image by a diffeomorphism of a subdomain of the unit square which is bounded by a number of smooth trim curves. A patchwise tensor product mesh is constructed by using a structured mesh in the reference domain. Since the patches are trimmed we obtain cut elements in the vicinity of the interfaces. We discretize the Laplace–Beltrami operator using a cut finite element method that utilizes Nitsche’s method to enforce continuity at the interfaces and a consistent stabilization term to handle the cut elements. Several quantities in the method are conveniently computed in the reference domain where the mappings impose a Riemannian metric. We derive a priori estimates in the energy and L2 norm and also present several numerical examples confirming our theoretical results.

  • 13.
    Jonsson, Tobias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Graded Parametric CutFEM and CutIGA for Elliptic Boundary Value Problems in Domains with Corners2019Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 354, s. 331-350Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a parametric cut finite element method for elliptic boundary value problems with corner singularities where we have weighted control of higher order derivatives of the solution to a neighborhood of a point at the boundary. Our approach is based on identification of a suitable mapping that grades the mesh towards the singularity. In particular, this mapping may be chosen without identifying the opening angle at the corner. We employ cut finite elements together with Nitsche boundary conditions and stabilization in the vicinity of the boundary. We prove that the method is stable and convergent of optimal order in the energy norm and L2 norm. This is achieved by mapping to the reference domain where we employ a structured mesh.

  • 14.
    Larsson, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    An introduction to relativistic electrodynamics: Part I: Calculus with 4-vectors and 4-dyadics2018Rapport (Annet vitenskapelig)
    Abstract [en]

    The conventional way of introducing relativity when teaching electrodynamics is to leave Gibbs' vector calculus for a more general tensor calculus. This sudden change of formalism can be quite problematic for the students and we therefore in this two-part paper consider alternate approaches. In this Part I we use a simplified tensor formalism with 4-vectors and 4-dyadics (i.e., second order tensors built by 4-vectors) but with no tensors of higher order than two. This allows for notations in good contact with the coordinate-free Gibbs' vector calculus that the students already master. Thus we use boldface notations for 4-vectors and 4-dyadics without coordinates and index algebra to formulate Lorentz transformations, Maxwell's equations, the equation of the motion of charged particles and the stress-energy conservation law. By first working with this simplified tensor formalism the students will get better prepared to learn the standard tensor calculus needed in more advanced courses.

  • 15.
    Larsson, Jonas
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    An introduction to relativistic electrodynamics: Part II: Calculus with complex 4-vectors2018Rapport (Annet vitenskapelig)
    Abstract [en]

    The conventional way of introducing relativity when teaching electrodynamics is to leave Gibbs' vector calculus for a more general tensor calculus. This sudden change of formalism can be quite problematic for the students and we therefore in this two-part paper consider alternate approaches. The algebra  of 2-by-2 complex matrices (sometimes presented in the form of Clifford algebra or complex quaternions) may be used for spinor related formulations of special relativity and electrodynamics. In this Part II we use this algebraic structure but with notations that fits in with the formalism of Part I. Each observer  defines a product on the space of complex 4-vectors  so that  becomes an algebra isomorphic to  with  as algebra unit. The spacetime geometric equations of Part I become complex (spinor related) equations where the antisymmetric 4-dyadics have been replaced by complex 3-vectors, i.e., by elements in . For example, instead of the electromagnetic dyadic field  we now have the complex field variable . Some linear algebra together with the formalism of Gibbs' vector calculus (trivially allowing for complex 3-vectors) is sufficient for dealing with the equations in their complex form.

  • 16.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Finite Element Methods for Thin Structures with Applications in Solid Mechanics2013Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Thin and slender structures are widely occurring both in nature and in human creations. Clever geometries of thin structures can produce strong constructions while requiring a minimal amount of material. Computer modeling and analysis of thin and slender structures have their own set of problems, stemming from assumptions made when deriving the governing equations. This thesis deals with the derivation of numerical methods suitable for approximating solutions to problems on thin geometries. It consists of an introduction and four papers.

    In the first paper we introduce a thread model for use in interactive simulation. Based on a three-dimensional beam model, a corotational approach is used for interactive simulation speeds in combination with adaptive mesh resolution to maintain accuracy.

    In the second paper we present a family of continuous piecewise linear finite elements for thin plate problems. Patchwise reconstruction of a discontinuous piecewise quadratic deflection field allows us touse a discontinuous Galerkin method for the plate problem. Assuming a criterion on the reconstructions is fulfilled we prove a priori error estimates in energy norm and L2-norm and provide numerical results to support our findings.

    The third paper deals with the biharmonic equation on a surface embedded in R3. We extend theory and formalism, developed for the approximation of solutions to the Laplace-Beltrami problem on an implicitly defined surface, to also cover the biharmonic problem. A priori error estimates for a continuous/discontinuous Galerkin method is proven in energy norm and L2-norm, and we support the theoretical results by numerical convergence studies for problems on a sphere and on a torus.

    In the fourth paper we consider finite element modeling of curved beams in R3. We let the geometry of the beam be implicitly defined by a vector distance function. Starting from the three-dimensional equations of linear elasticity, we derive a weak formulation for a linear curved beam expressed in global coordinates. Numerical results from a finite element implementation based on these equations are compared with classical results.

  • 17.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Finite element methods for threads and plates with real-time applications2010Licentiatavhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Thin and slender structures are widely occurring both in nature and in human creations. Clever geometries of thin structures can produce strong constructions while using a minimal amount of material. Computer modeling and analysis of thin and slender structures has its own set of problems stemming from assumptions made when deriving the equations modeling their behavior from the theory of continuum mechanics. In this thesis we consider two kinds of thin elastic structures; threads and plates.

    Real-time simulation of threads are of interest in various types of virtual simulations such as surgery simulation for instance. In the first paper of this thesis we develop a thread model for use in interactive applications. By viewing the thread as a continuum rather than a truly one dimensional object existing in three dimensional space we derive a thread model that naturally handles both bending, torsion and inertial effects. We apply a corotational framework to simulate large deformation in real-time. On the fly adaptive resolution is used to minimize corotational artifacts.

    Plates are flat elastic structures only allowing deflection in the normal direction. In the second paper in this thesis we propose a family of finite elements for approximating solutions to the Kirchhoff-Love plate equation using a continuous piecewise linear deflection field. We reconstruct a discontinuous piecewise quadratic deflection field which is applied in a discontinuous Galerkin method. Given a criterion on the reconstruction operator we prove a priori estimates in energy and L2 norms. Numerical results for the method using three possible reconstructions are presented.

  • 18.
    Larsson, Karl
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    A continuous/discontinuous Galerkin method and a priori error estimates for the biharmonic problem on surfaces2017Inngår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 86, nr 308, s. 2613-2649Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We present a continuous/discontinuous Galerkin method for approximating solutions to a fourth order elliptic PDE on a surface embedded in R-3. A priori error estimates, taking both the approximation of the surface and the approximation of surface differential operators into account, are proven in a discrete energy norm and in L-2 norm. This can be seen as an extension of the formalism and method originally used by Dziuk ( 1988) for approximating solutions to the Laplace-Beltrami problem, and within this setting this is the first analysis of a surface finite element method formulated using higher order surface differential operators. Using a polygonal approximation inverted right perpendicular(h) of an implicitly defined surface inverted right perpendicular we employ continuous piecewise quadratic finite elements to approximate solutions to the biharmonic equation on inverted right perpendicular. Numerical examples on the sphere and on the torus confirm the convergence rate implied by our estimates.

  • 19.
    Larsson, Karl
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Continuous piecewise linear finite elements for the Kirchhoff–Love plate equation2012Inngår i: Numerische Mathematik, ISSN 0029-599X, E-ISSN 0945-3245, Vol. 121, nr 1, s. 65-97Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A family of continuous piecewise linear finite elements for thin plate problems is presented. We use standard linear interpolation of the deflection field to reconstruct a discontinuous piecewise quadratic deflection field. This allows us to use discontinuous Galerkin methods for the Kirchhoff–Love plate equation. Three example reconstructions of quadratic functions from linear interpolation triangles are presented: a reconstruction using Morley basis functions, a fully quadratic reconstruction, and a more general least squares approach to a fully quadratic reconstruction. The Morley reconstruction is shown to be equivalent to the basic plate triangle (BPT). Given a condition on the reconstruction operator, a priori error estimates are proved in energy norm and L2 norm. Numerical results indicate that the Morley reconstruction/BPT does not converge on unstructured meshes while the fully quadratic reconstruction show optimal convergence.

  • 20.
    Larsson, Karl
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Continuous piecewise linear finite elements for the Kirchhoff-Love plate equationManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    A family of continuous piecewise linear finite elements for thin plate problems is presented. We use standard linear interpolation of the deflection field to reconstruct a discontinuous piecewise quadratic deflection field. This allows us to use discontinuous Galerkin methods for the Kirchhoff-Love plate equation. Three example reconstructions of quadratic functions from linear interpolation triangles are presented: a reconstruction using Morley basis functions, a fully quadratic reconstruction, and a more general least squares approach to a fully quadratic reconstruction. The Morley reconstruction is shown to be equivalent to the Basic Plate Triangle. Given a condition on the reconstruction operator, a priori error estimates are proved in energy norm and L2 norm. Numerical results indicate that the Morley reconstruction/Basic Plate Triangle does not converge on unstructured meshes while the fully quadratic reconstruction show optimal convergence.

  • 21.
    Larsson, Karl
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Wallgren, Göran
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Interactive simulation of a continuum mechanics based torsional thread2010Inngår i: Vriphys 10: 7th workshop on virtual reality interaction and physical simulation / [ed] Kenny Erleben, Jan Bender, Matthias Teschner, Copenhagen, Denmark: Eurographics Association , 2010, s. 49-58Konferansepaper (Fagfellevurdert)
    Abstract [en]

    This paper introduces a continuum mechanics based thread model for use in real-time simulation. The model includes both rotary inertia, shear deformation and torsion. It is based on a three-dimensional beam model, using a corotational approach for interactive simulation speeds as well as adaptive mesh resolution to maintain accuracy. Desirable aspects of this model from a numerical and implementation point of view include a true constant and symmetric mass matrix, a symmetric and easily evaluated tangent stiffness matrix, and easy implementation of time-stepping algorithms. From a modeling perspective interesting features are deformation of the thread cross section and the use of arbitrary cross sections without performance penalty.

1 - 21 of 21
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf