umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Espling, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Copper-transporting proteins and their interactions with platinum-based anticancer substances2013Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

      Cisplatin (CisPt) is an important drug that is used against various cancers, including testicular, ovarian, lung, head, and neck cancer. However, its effects are limited by cellular resistance. The resistance is believed to be multifactorial, and may be mediated to varying degree by multiple systems in cells, one of the proposed systems being the copper (Cu) transporting system. The Cu-importer Ctr1 has proven importance for cellular sensitivity to CisPt by regulating its influx, while the Golgi-localized Cu-ATP:ases ATP7A/B can putatively mediate CisPt efflux and/or drug sequestration. Atox1 is a small Cu-chaperone that normally transfers Cu between Ctr1 and ATP7A/B, prior to delivery of Cu to the proteins in the secretory pathway. Since Ctr1 and ATP7A/B are reportedly involved in CisPt-resistance, CisPt interaction with Atox1 was the focus of the project this thesis is based upon.

      Using a variety of techniques, Atox1 was found to bind CisPt, also simultaneously with Cu. The Atox1-CisPt complexes were further probed using selected mutants in studies demonstrating that only the two cysteines (Cys12 and Cys15) in the Cu-binding site of Atox1 are essential for CisPt interactions. A proposed Atox1 di-metal complex containing both Cu and CisPt was found to be monomeric, and no loss of Cu was observed. In vitro experiments demonstrated that CisPt could also bind to metal-binding domain 4 of ATP7B (WD4), and that the drug could be transferred from Atox1 to the domain. These findings indicated that Atox1 may transfer CisPt to ATP7A/B in vivo, utilizing the same transport pathway as Cu. However, the CisPt-bound Atox1 complexes were not stable over time; upon incubation, protein unfolding and aggregation were observed. Thus, in vivo, Atox1 might alternatively be a dead-end sink for CisPt.

      The effects of the ligands around the Pt-center of Pt-based anticancer drugs and drug derivatives on Atox1 binding and unfolding were also investigated. The ligands’ chemistry and geometry were shown to dictate the extent and rate of the Pt-based substances interactions with Atox1. Finally, the occurrence of Atox1-CisPt interactions in a biological environment was demonstrated by developing and applying an antibody-based method allowing analysis of metals associated with Atox1 extracted from CisPt-treated cells.

      The findings presented in this thesis show that CisPt binds to Atox1 and WD4, also simultaneously with Cu, in vitro. The results support the hypothesis that Cu-transporting proteins can mediate cellular resistance to CisPt in vivo, and provide a deeper chemical understanding of the interactions between the proteins and the drug.

    Ladda ner fulltext (pdf)
    Avhandling Maria Espling
  • 2.
    Palm-Espling, Maria
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andersson, David C.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Björn, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Linusson, Anna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Determinants for simultaneous binding of copper and platinum to human chaperone Atox1: hitchhiking not hijacking2013Ingår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 7, artikel-id e70473Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu) ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15) are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4), indicative of a possible drug detoxification mechanism.

    Ladda ner fulltext (pdf)
    Determinants for simultaneous binding of copper and platinum to human chaperone Atox1
  • 3.
    Palm-Espling, Maria E
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Niemiec, Moritz S
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Role of metal in folding and stability of copper proteins in vitro2012Ingår i: Biochimica et Biophysica Acta. Molecular Cell Research, ISSN 0167-4889, E-ISSN 1879-2596, Vol. 1823, nr 9, s. 1594-1603Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Metal coordination is required for function of many proteins. For biosynthesis of proteins coordinating a metal, the question arises if the metal binds before, during or after folding of the polypeptide. Moreover, when the metal is bound to the protein, how does its coordination affect biophysical properties such as stability and dynamics? Understanding how metals are utilized by proteins in cells on a molecular level requires accurate descriptions of the thermodynamic and kinetic parameters involved in protein-metal complexes. Copper is one of the essential transition metals found in the active sites of many key proteins. To avoid toxicity of free copper ions, living systems have developed elaborate copper-transport systems that involve dedicated proteins that facilitate efficient and specific delivery of copper to target proteins. This review describes in vitro and in silico biophysical work assessing the role of copper in folding and stability of copper-binding proteins. Examples of proteins discussed are: a blue-copper protein (Pseudomonas aeruginosa azurin), members of copper-transport systems (bacterial CopZ, human Atox1 and ATP7B domains) and multi-copper ferroxidases (yeast Fet3p and human ceruloplasmin). The consequences of interactions between copper proteins and platinum-complexes are also discussed. 

  • 4.
    Palm-Espling, Maria E
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Reaction of platinum anticancer drugs and drug derivatives with a copper transporting protein, Atox12012Ingår i: Biochemical Pharmacology, ISSN 0006-2952, E-ISSN 1356-1839, Vol. 83, nr 7, s. 874-881Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Platinum (Pt) containing anticancer drugs have been used in cancer treatment for several decades as they trigger cell death upon DNA binding. Pt-containing anticancer drugs and drug derivates with a variety of ligands around the Pt center (with Cisplatin being most well known) exist today in clinics and in clinical trials. However, a major drawback with these drugs is limited efficacy due to side reactions resulting in cell resistance. The cellular copper (Cu) transport pathway is proposed to be responsible for part of these side reactions through interactions with the Pt-containing drugs and possibly cellular export of Pt. The cytoplasmic Cu chaperone, Atox1, was recently found to bind Cisplatin in vitro and, when over-expressed in Escherichia coli, in vivo. Here we investigate how the chemical properties of six Pt-substances differentially affect binding, unfolding, and aggregation of Atox1 in vitro using near- and far-UV circular dichroism (CD) spectroscopy and SDS-PAGE. The results show that both ligand type and orientation dictate the interactions with Atox1. Only substances with two good leaving groups in cis-configuration result in near-UV CD changes that report on Cu–Pt interactions. The different substances promote Atox1 unfolding in a pattern that can be explained by ligand chemistry and geometry. Our work emphasize that ligands around the Pt-center have decisive roles in tuning protein interactions (prior to DNA binding) and therefore they also dictate the level of drug side effects and cellular resistance.

  • 5.
    Palm-Espling, Maria
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Lundin, Christina
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Kirurgi.
    Björn, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Naredi, Peter
    Kirurgi, Sahlgrenska sjukhuset, Göteborgs universitet.
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Interaction between anticancer drug Cisplatin and copper chaperone Atox1 in human melanoma cells2014Ingår i: Protein peptide letters, ISSN 0929-8665, E-ISSN 1875-5305, Vol. 21, nr 1, s. 63-68Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Cisplatin (CisPt) is one of the most common anticancer drugs used against many severe forms of cancers. However, treatment with this drug causes many side effects and often, it results in the development of cell resistance. A majority of side effects as well as cell resistance are thought to develop due to CisPt interactions with proteins prior to reaching the nucleus and the DNA target. The copper (Cu) transport proteins Ctr1 and ATP7A/B have been implicated in cellular resistance of CisPt, possibly exporting the drug out of the cell. Recent in vitro work demonstrated that CisPt also interacts with the cytoplasmic Cu-chaperone Atox1, binding in or near the Cu-binding site, without expulsion of bound Cu. Whereas Ctr1 and ATP7B interactions with CisPt have been shown in vivo or ex vivo, there is no such information for Atox1-CisPt interactions. To address this, we developed a method to probe if CisPt interacts with Atox1 in human melanoma cells. Atox1-specific antibodies were linked to magnetic beads and used to immune-precipitate Atox1 from melanoma cells that had been pre-exposed to CisPt. Analysis of extracted Atox1 with inductively coupled plasma mass spectrometry demonstrated the presence of Pt in the protein fraction. Thus, CisPt-exposed human melanoma cells contain Atox1 molecules that bind some derivative of CisPt. This study gives the first indication for the intracellular presence of Atox1-CisPt complexes ex vivo.

    Ladda ner fulltext (pdf)
    Interaction between anticancer drug cisplatin and copper chaperone Atox1 in human melanoma cells
1 - 5 av 5
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf