umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Chang, Chuchun L.
    et al.
    Garcia-Arcos, Itsaso
    Nyrén, Rakel
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Olivecrona, Gunilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Kim, Ji Young
    Hu, Yunying
    Agrawal, Rishi R.
    Murphy, Andrew J.
    Goldberg, Ira J.
    Deckelbaum, Richard J.
    Lipoprotein Lipase Deficiency Impairs Bone Marrow Myelopoiesis and Reduces Circulating Monocyte Levels2018Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology, ISSN 1079-5642, E-ISSN 1524-4636, Vol. 38, nr 3, s. 509-519Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Objective: Tissue macrophages induce and perpetuate proinflammatory responses, thereby promoting metabolic and cardiovascular disease. Lipoprotein lipase (LpL), the rate-limiting enzyme in blood triglyceride catabolism, is expressed by macrophages in atherosclerotic plaques. We questioned whether LpL, which is also expressed in the bone marrow (BM), affects circulating white blood cells and BM proliferation and modulates macrophage retention within the artery.

    Approach and Results: We characterized blood and tissue leukocytes and inflammatory molecules in transgenic LpL knockout mice rescued from lethal hypertriglyceridemia within 18 hours of life by muscle-specific LpL expression (MCKL0 mice). LpL-deficient mice had ≈40% reduction in blood white blood cell, neutrophils, and total and inflammatory monocytes (Ly6C/Ghi). LpL deficiency also significantly decreased expression of BM macrophage-associated markers (F4/80 and TNF-α [tumor necrosis factor α]), master transcription factors (PU.1 and C/EBPα), and colony-stimulating factors (CSFs) and their receptors, which are required for monocyte and monocyte precursor proliferation and differentiation. As a result, differentiation of macrophages from BM-derived monocyte progenitors and monocytes was decreased in MCKL0 mice. Furthermore, although LpL deficiency was associated with reduced BM uptake and accumulation of triglyceride-rich particles and macrophage CSF–macrophage CSF receptor binding, triglyceride lipolysis products (eg, linoleic acid) stimulated expression of macrophage CSF and macrophage CSF receptor in BM-derived macrophage precursor cells. Arterial macrophage numbers decreased after heparin-mediated LpL cell dissociation and by genetic knockout of arterial LpL. Reconstitution of LpL-expressing BM replenished aortic macrophage density.

    Conclusions: LpL regulates peripheral leukocyte levels and affects BM monocyte progenitor differentiation and aortic macrophage accumulation.

  • 2. Davies, Brandon S J
    et al.
    Beigneux, Anne P
    Barnes, Richard H
    Tu, Yiping
    Gin, Peter
    Weinstein, Michael M
    Nobumori, Chika
    Nyrén, Rakel
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Goldberg, Ira
    Olivecrona, Gunilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Bensadoun, André
    Young, Stephen G
    Fong, Loren G
    GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries.2010Ingår i: Cell metabolism, ISSN 1932-7420, Vol. 12, nr 1, s. 42-52Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The lipolytic processing of triglyceride-rich lipoproteins by lipoprotein lipase (LPL) is the central event in plasma lipid metabolism, providing lipids for storage in adipose tissue and fuel for vital organs such as the heart. LPL is synthesized and secreted by myocytes and adipocytes, but then finds its way into the lumen of capillaries, where it hydrolyzes lipoprotein triglycerides. The mechanism by which LPL reaches the lumen of capillaries has remained an unresolved problem of plasma lipid metabolism. Here, we show that GPIHBP1 is responsible for the transport of LPL into capillaries. In Gpihbp1-deficient mice, LPL is mislocalized to the interstitial spaces surrounding myocytes and adipocytes. Also, we show that GPIHBP1 is located at the basolateral surface of capillary endothelial cells and actively transports LPL across endothelial cells. Our experiments define the function of GPIHBP1 in triglyceride metabolism and provide a mechanism for the transport of LPL into capillaries.

  • 3.
    Nyrén, Rakel
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Chang, Chuchun L
    Columbia University.
    Lindström, Per
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Histologi med cellbiologi.
    Barmina, Anastasia
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Vorrsjö, Evelina
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Ali, Yusuf
    Karolinska Institutet.
    Juntti-Berggren, Lisa
    Karolinska Institutet.
    Bensadoun, André
    Cornell University, Ithaca.
    Young, Stephen G
    University of California, Los Angeles.
    Olivecrona, Thomas
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Olivecrona, Gunilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency2012Ingår i: BMC Physiology, ISSN 1472-6793, E-ISSN 1472-6793, Vol. 12, s. 14-Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    BACKGROUND: Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins and enables uptake of lipolysis products for energy production or storage in tissues. Our aim was to study the localization of LPL and its endothelial anchoring protein glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in mouse pancreas, and effects of diet and leptin deficiency on their expression patterns. For this, immunofluorescence microscopy was used on pancreatic tissue from C57BL/6 mouse embryos (E18), adult mice on normal or high-fat diet, and adult ob/ob-mice treated or not with leptin. The distribution of LPL and GPIHBP1 was compared to insulin, glucagon and CD31. Heparin injections were used to discriminate between intracellular and extracellular LPL.

    RESULTS: In the exocrine pancreas LPL was found in capillaries, and was mostly co-localized with GPIHBP1. LPL was releasable by heparin, indicating localization on cell surfaces. Within the islets, most of the LPL was associated with beta cells and could not be released by heparin, indicating that the enzyme remained mostly within cells. Staining for LPL was found also in the glucagon-producing alpha cells, both in embryos (E18) and in adult mice. Only small amounts of LPL were found together with GPIHBP1 within the capillaries of islets. Neither a high fat diet nor fasting/re-feeding markedly altered the distribution pattern of LPL or GPIHBP1 in mouse pancreas. Islets from ob/ob mice appeared completely deficient of LPL in the beta cells, while LPL-staining was normal in alpha cells and in the exocrine pancreas. Leptin treatment of ob/ob mice for 12 days reversed this pattern, so that most of the islets expressed LPL in beta cells.

    CONCLUSIONS: We conclude that both LPL and GPIHBP1 are present in mouse pancreas, and that LPL expression in beta cells is dependent on leptin.

  • 4.
    Nyrén, Rakel
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Makoveichuk, Elena
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Malla, Sandhya
    Umeå universitet, Medicinska fakulteten, Wallenberg centrum för molekylär medicin vid Umeå universitet (WCMM). Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Kersten, Sander
    Nilsson, Stefan K.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Ericsson, Madelene
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Olivecrona, Gunilla
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Fysiologisk kemi.
    Lipoprotein lipase in mouse kidney: effects of nutritional status and high-fat diet2019Ingår i: American Journal of Physiology - Renal Physiology, ISSN 1931-857X, E-ISSN 1522-1466, Vol. 316, nr 3, s. F558-F571Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Activity of lipoprotein lipase (LPL) is high in mouse kidney, but the reason is poorly understood. The aim was to characterize localization, regulation, and function of LPL in kidney of C57BL/6J mice. We found LPL mainly in proximal tubules, localized inside the tubular epithelial cells, under all conditions studied. In fed mice, some LPL, colocalized with the endothelial markers CD31 and GPIHBP1 and could be removed by perfusion with heparin. indicating a vascular location. The role of angiopoietin-like protein 4 (ANGPTL4) for nutritional modulation of LPL activity was studied in wild-type and Angptl4(-/-) mice. In Angptl4(-/-) mice, kidney LPL activity remained high in fasted animals, indicating that ANGPTL4 is involved in suppression of LPL activity on fasting, like in adipose tissue. The amount of ANGPTL4 protein in kidney was low, and the protein appeared smaller in size, compared with ANGPTL4 in heart and adipose tissue. To study the influence of obesity, mice were challenged with high-fat diet for 22 wk, and LPL was studied after an overnight fast compared with fasted mice given food for 3 h. High-fat diet caused blunting of the normal adaptation of LPL activity to feeding/fasting in adipose tissue, but in kidneys this adaptation was lost only in male mice. LPL activity increases to high levels in mouse kidney after feeding, but as no difference in uptake of chylomicron triglycerides in kidneys is found between fasted and fed states, our data confinn that LPL appears to have a minor role for lipid uptake in this organ.

1 - 4 av 4
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf