umu.sePublications
Change search
Refine search result
1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Boman, Christoffer
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Öhman, Marcus
    Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Engineering.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Backman, Rainer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boström, Dan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ash transformation chemistry in biomass fixed beds with focus on slagging and aerosols: 20 years of research and new developments2017In: Abstract of Papers of the American Chemical Society, ISSN 0065-7727, Vol. 254Article in journal (Other academic)
  • 2. Fatehi, Hesameddin
    et al.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Bai, Xue-Song
    Gas phase combustion in the vicinity of a biomass particle during devolatilization: model development and experimental verification2018In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 196, p. 351-363Article in journal (Refereed)
    Abstract [en]

    A numerical and experimental study on the devolatilization of a large biomass particle is carried out to quantify the effect of homogeneous volatile combustion on the conversion of the particle and on the temperature and species distribution at the particle vicinity. A global chemical kinetic mechanism and a detailed reaction mechanism are considered in a one dimensional numerical model that takes into account preferential diffusivity and a detailed composition of tar species. An adaptive moving mesh is employed to capture the changes in the domain due to particle shrinkage. The effect of gas phase reactions on pyrolysis time, temperature and species distribution close to the particle is studied and compared to experiments. Online in situ measurements of average H2O mole fraction and gas temperature above a softwood pellet are conducted in a reactor using tunable diode laser absorption spectroscopy (TDLAS) while recording the particle mass loss. The results show that the volatile combustion plays an important role in the prediction of biomass conversion during the devolatilization stage. It is shown that the global reaction mechanism predicts a thin flame front in the vicinity of the particle deviating from the measured temperature and H2O distribution over different heights above the particle. A better agreement between numerical and experimental results is obtained using the detailed reaction mechanism, which predicts a wider reaction zone.

  • 3.
    Ghorbani, Ramin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Extended breath CO analysis: baseline and diurnal variation of pulmonary gas exchange parametersManuscript (preprint) (Other academic)
  • 4.
    Ghorbani, Ramin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Blomberg, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Modeling pulmonary gas exchange and single-exhalation profiles of carbon monoxide2018In: Frontiers in Physiology, ISSN 1664-042X, E-ISSN 1664-042X, Vol. 9, article id 927Article in journal (Refereed)
    Abstract [en]

    Exhaled breath carbon monoxide (eCO) is a candidate biomarker for non-invasive assessment of oxidative stress and respiratory diseases. Standard end-tidal CO analysis, however, cannot distinguish, whether eCO reflects endogenous CO production, lung diffusion properties or exogenous sources, and is unable to resolve a potential airway contribution. Coupling real-time breath gas analysis to pulmonary gas exchange modeling holds promise to improve the diagnostic value of eCO. A trumpet model with axial diffusion (TMAD) is used to simulate the dynamics of CO gas exchange in the respiratory system and corresponding eCO concentrations for the first time. The mass balance equation is numerically solved employing a computationally inexpensive routine implementing the method of lines, which provides the distribution of CO in the respiratory tract during inhalation, breath-holding and exhalation with 1 mm spatial and 0.01 s temporal resolution. Initial estimates of the main TMAD parameters, the maximum CO fluxes and diffusing capacities in alveoli and airways, are obtained using healthy population tissue, blood and anatomical data. To verify the model, mouth-exhaled expirograms from two healthy subjects, measured with a novel, home-built laser-based CO sensor, are compared to single-exhalation profiles simulated using actual breath sampling data, such as exhalation flow rate (EFR) and volume. A very good agreement is obtained in exhalation phases I and III for EFRs between 55 and 220 ml/s and after 10 s and 20 s of breath-holding, yielding a unique set of TMAD parameters. The results confirm the recently observed EFR dependence of CO expirograms and suggest that measured end-tidal eCO is always lower than alveolar and capillary CO. Breath-holding allows the observation of close-to-alveolar CO concentrations and increases the sensitivity to the airway TMAD parameters in exhalation phase I. A parametric simulation study shows that a small increase in airway flux can be distinguished from an increase in alveolar flux, and that slight changes in alveolar flux and diffusing capacity have a significantly different effect on phase III of the eCO profiles.

  • 5.
    Ghorbani, Ramin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Fitting of single-exhalation profiles using a pulmonary gas exchange model: application to carbon monoxide2019In: Journal of Breath Research, ISSN 1752-7155, E-ISSN 1752-7163, Vol. 13, no 2, article id 026001Article in journal (Refereed)
    Abstract [en]

    Real-time breath gas analysis coupled to gas exchange modeling is emerging as promising strategy to enhance the information gained from breath tests. It is shown for exhaled breath carbon monoxide (eCO), a potential biomarker for oxidative stress and respiratory diseases, that a weighted, nonlinear least-squares fit of simulated to measured expirograms can be used to extract physiological parameters, such as airway and alveolar concentrations and diffusing capacities. Experimental CO exhalation profiles are acquired with high time-resolution and precision using mid-infrared tunable diode laser absorption spectroscopy and online breath sampling. A trumpet model with axial diffusion is employed to generate eCO profiles based on measured exhalation flow rates and volumes. The concept is demonstrated on two healthy non-smokers exhaling at a flow rate of 250 ml s−1 during normal breathing and at 120 ml s−1 after 10 s of breath-holding. The obtained gas exchange parameters of the two subjects are in a similar range, but clearly distinguishable. Over a series of twenty consecutive expirograms, the intra-individual variation in the alveolar parameters is less than 6%. After a 2 h exposure to 10 ± 2 ppm CO, end-tidal and alveolar CO concentrations are significantly increased (by factors of 2.7 and 4.9 for the two subjects) and the airway CO concentration is slightly higher, while the alveolar diffusing capacity is unchanged compared to before exposure. Using model simulations, it is found that a three-fold increase in maximum airway CO flux and a reduction in alveolar diffusing capacity by 60% lead to clearly distinguishable changes in the exhalation profile shape. This suggests that extended breath CO analysis has clinical relevance in assessing airway inflammation and chronic obstructive pulmonary disease. Moreover, the novel methodology contributes to the standardization of real-time breath gas analysis.

  • 6.
    Ghorbani, Ramin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    ICL-based TDLAS sensor for real-time breath gas analysis of carbon monoxide isotopes2017In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 25, no 11, p. 12743-12752Article in journal (Refereed)
    Abstract [en]

    We present a compact sensor for carbon monoxide (CO) in air and exhaled breath based on a room temperature interband cascade laser (ICL) operating at 4.69 µm, a low-volume circular multipass cell and wavelength modulation absorption spectroscopy. A fringe-limited (1σ) sensitivity of 6.5 × 10−8 cm−1Hz-1/2 and a detection limit of 9 ± 5 ppbv at 0.07 s acquisition time are achieved, which constitutes a 25-fold improvement compared to direct absorption spectroscopy. Integration over 10 s increases the precision to 0.6 ppbv. The setup also allows measuring the stable isotope 13CO in breath. We demonstrate quantification of indoor air CO and real-time detection of CO expirograms from healthy non-smokers and a healthy smoker before and after smoking. Isotope ratio analysis indicates depletion of 13CO in breath compared to natural abundance.

  • 7.
    Ghorbani, Ramin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Real-time breath gas analysis of CO and CO2 using an EC-QCL2017In: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 123, no 5, article id 144Article in journal (Refereed)
    Abstract [en]

    Real-time breath gas analysis is a promising, non-invasive tool in medical diagnostics, and well-suited to investigate the physiology of carbon monoxide (CO), a potential biomarker for oxidative stress and respiratory diseases. A sensor for precise, breath-cycle resolved, simultaneous detection of exhaled CO (eCO) and carbon dioxide (eCO2) was developed based on a continuous wave, external-cavity quantum cascade laser (EC-QCL), a low-volume multi-pass cell and wavelength modulation spectroscopy. The system achieves a noise-equivalent (1σ) sensitivity of 8.5 × 10−8 cm−1 Hz−1/2 and (2σ) detection limits of 9 ± 2 ppbv and 650 ± 7 ppmv at 0.14 s spectrum acquisition time for CO and CO2, respectively. Integration over 15 s yields a precision of 0.6 ppbv for CO. The fact that the eCO2 expirograms measured by capnography and laser spectroscopy have essentially identical shape confirms true real-time detection. It is found that the individual eCO exhalation profiles from healthy non-smokers have a slightly different shape than the eCO2 profiles and exhibit a clear dependence on exhalation flow rate and breath-holding time. Detection of indoor air CO and broadband breath profiling across the 93 cm−1 mode-hop-free tuning range of the EC-QCL are also demonstrated.

  • 8. Henderson, Ben
    et al.
    Khodabakhsh, Amir
    Metsälä, Markus
    Ventrillard, Irène
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Romanini, Daniele
    Ritchie, Grant A. D.
    te Lintel Hekkert, Sacco
    Briot, Raphaël
    Risby, Terence
    Marczin, Nandor
    Harren, Frans J. M.
    Cristescu, Simona M.
    Laser spectroscopy for breath analysis: towards clinical implementation2018In: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 124, no 8, article id 161Article in journal (Refereed)
    Abstract [en]

    Detection and analysis of volatile compounds in exhaled breath represents an attractive tool for monitoring the metabolic status of a patient and disease diagnosis, since it is non-invasive and fast. Numerous studies have already demonstrated the benefit of breath analysis in clinical settings/applications and encouraged multidisciplinary research to reveal new insights regarding the origins, pathways, and pathophysiological roles of breath components. Many breath analysis methods are currently available to help explore these directions, ranging from mass spectrometry to laser-based spectroscopy and sensor arrays. This review presents an update of the current status of optical methods, using near and mid-infrared sources, for clinical breath gas analysis over the last decade and describes recent technological developments and their applications. The review includes: tunable diode laser absorption spectroscopy, cavity ring-down spectroscopy, integrated cavity output spectroscopy, cavity-enhanced absorption spectroscopy, photoacoustic spectroscopy, quartz-enhanced photoacoustic spectroscopy, and optical frequency comb spectroscopy. A SWOT analysis (strengths, weaknesses, opportunities, and threats) is presented that describes the laser-based techniques within the clinical framework of breath research and their appealing features for clinical use.

  • 9.
    Lu, Chuang
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Vieira, Francisco Senna
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Near-Infrared Continuous-Filtering Vernier Spectroscopy in a Flame2019In: Conference on Lasers and Electro-Optics, IEEE, 2019, article id SM2N.5Conference paper (Refereed)
    Abstract [en]

    A continuous-filtering Vernier spectrometer based on an Er:fiber femtosecond laser was developed to acquire broadband H2O and OH spectra in a premixed CH4/air flame with 25 ms time resolution and percent precision on concentrations retrieval.

  • 10.
    Lu, Chuang
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Vieira, Francisco Senna
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Time-resolved continuous-filtering Vernier spectroscopy of H2O and OH radical in a flame2019In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 27, no 21, p. 29521-29533Article in journal (Refereed)
    Abstract [en]

    We use broadband near-infrared continuous-filtering Vernier spectroscopy (CF-VS) for time-resolved detection of H2O and OH radical in a premixed CH4/air flat flame. The CF-VS spectrometer is based on a femtosecond Er:fiber laser, an external cavity that contains the flame, and a detection system comprising a rotating diffraction grating and photodetectors. Spectra of H2O and OH radical around 1570 nm are continuously recorded with 6.6 GHz spectral resolution, 4.0 x 10-7 cm-1 absorption sensitivity, and 25 ms time resolution, while the fuel-air equivalence ratio is periodically modulated with a square wave. The concentrations of the two analytes are retrieved with percent level precision by a fit of a Vernier model to each spectrum spanning 13 nm. The temporal profiles of both concentrations in each modulation cycle are repeatable and the steady-state concentration levels are in good agreement with predictions based on one-dimensional simulations of a static flat flame. The robust CF-VS spectrometer opens up for quantitative monitoring of multiple products of time-varying combustion processes with relatively simple data acquisition procedures.

  • 11. Metsälä, Markus
    et al.
    Schmidt, Florian M.
    University of Helsinki.
    Skytta, Mirva
    Vaittinen, Olavi
    Halonen, Lauri
    Acetylene in breath: background levels and real-time elimination kinetics after smoking2010In: Journal of Breath Research, ISSN 1752-7155, E-ISSN 1752-7163, Vol. 4, no 4, article id 046003Article in journal (Refereed)
    Abstract [en]

    We have measured the acetylene concentration in the exhaled breath of 40 volunteers (31 non-smokers, nine smokers) using near-infrared cavity ring-down spectroscopy. The acetylene levels were found to be the same as in ambient air for non-smokers, whereas elevated levels were observed for smokers. Real-time measurements with sub-second time resolution have been applied to measure the elimination kinetics of acetylene in breath after exposure to tobacco smoke. Three exponential time constants can be distinguished from the data and these can be used to define the residence times for different compartments, according to the multi-compartment model of the human body.

  • 12.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ghorbani, Ramin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Valiev, Damir
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Calibration-free scanned wavelength modulation spectroscopy – application to H2O and temperature sensing in flames2015In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 23, no 12, p. 16492-16499Article in journal (Refereed)
    Abstract [en]

    A calibration-free scanned wavelength modulation spectroscopy scheme requiring minimal laser characterization is presented. Species concentration and temperature are retrieved simultaneously from a single fit to a group of 2f/1f-WMS lineshapes acquired in one laser scan. The fitting algorithm includes a novel method to obtain the phase shift between laser intensity and wavelength modulation, and allows for a wavelengthdependent modulation amplitude. The scheme is demonstrated by detection of H2O concentration and temperature in atmospheric, premixed CH4/air flat flames using a sensor operating near 1.4 μm. The detection sensitivity for H2O at 2000 K was 4 × 10−5 cm−1 Hz-1/2, and temperature was determined with a precision of 10 K and absolute accuracy of ~50 K. A parametric study of the dependence of H2O and temperature on distance to the burner and total fuel mass flow rate shows good agreement with 1D simulations.

  • 13.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Holmgren, Per
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Energy Engineering, Department of Engineering Sciences & Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden.
    Wagner, David R.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Distribution of temperature, H2O and atomic potassium during entrained flow biomass combustion: coupling in situ TDLAS with modeling approaches and ash chemistry2018In: Combustion and Flame, ISSN 0010-2180, E-ISSN 1556-2921, Vol. 188, p. 488-497Article in journal (Refereed)
    Abstract [en]

    Tunable diode laser absorption spectroscopy (TDLAS) is employed for simultaneous detection of gas temperature, water vapor (H2O) and gas-phase atomic potassium, K(g), in an atmospheric, research-scale entrained flow reactor (EFR). In situ measurements are conducted at four different locations in the EFR core to study the progress of thermochemical conversion of softwood and Miscanthus powders with focus on the primary potassium reactions. In an initial validation step during propane flame operation, the measured axial EFR profiles of H2O density-weighted, path-averaged temperature, path-averaged H2O concentration and H2O column density are found in good agreement with 2D CFD simulations and standard flue gas analysis. During biomass conversion, temperature and H2O are significantly higher than for the propane flame, up to 1500 K and 9%, respectively, and K(g) concentrations between 0.2 and 270 ppbv are observed. Despite the large difference in initial potassium content between the fuels, the K(g) concentrations obtained at each EFR location are comparable, which highlights the importance of considering all major ash-forming elements in the fuel matrix. For both fuels, temperature and K(g) decrease with residence time, and in the lower part of the EFR, K(g) is in excellent agreement with thermodynamic equilibrium calculations evaluated at the TDLAS-measured temperatures and H2O concentrations. However, in the upper part of the EFR, where the measured H2O suggested a global equivalence ratio smaller than unity, K(g) is far below the predicted equilibrium values. This indicates that, in contrast to the organic compounds, potassium species rapidly undergo primary ash transformation reactions even if the fuel particles reside in an oxygen-deficient environment.

  • 14.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Holmgren, Per
    Skoglund, Nils
    Wagner, David R.
    Broström, Markus
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Investigation of H2O, temperature and potassium in entrained flow biomass combustion – coupling in situ TDLAS with modelling2017In: Nordic Flame Days 2017, 10-11 October, Stockholm, 2017Conference paper (Refereed)
  • 15.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Holmgren, Per
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Wagner, David R.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    TDLAS-based in situ detection of atomic potassium during combustion of biomass in an entrained flow reactor2016Conference paper (Other academic)
  • 16.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Calibration-free wavelength modulation spectroscopy applications from combustion to medical science2014In: OSA Meeting: Light, Energy and the Environment Congress, December 1-6, 2014, Canberra, Australia, Canberra Australia: Optics Info Base, Optical Society of America, 2014, , p. EW4A.5Conference paper (Refereed)
    Abstract [en]

    Calibration-free wavelength modulation spectroscopy was employed for measuring temperature and H2O concentration in combustion environments with a near-infrared DFB-laser, and for detection of CO in human breath using a quantum cascade laser.

  • 17.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    In situ H2O and temperature detection close to burning biomass pellets using calibration-free wavelength modulation spectroscopy2015In: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 119, no 1, p. 45-53Article in journal (Refereed)
    Abstract [en]

    The design and application of an H2O/temperature sensor based on scanned calibration-free wavelength modulation spectroscopy (CF-WMS) and a single tunable diode laser at 1.4 μm is presented. The sensor probes two H2O absorption peaks in a single scan and simultaneously retrieves H2O concentration and temperature by least-squares fitting simulated 1f-normalized 2f-WMS spectra to measured 2f/1f-WMS signals, with temperature, concentration and nonlinear modulation amplitude as fitting parameters. Given a minimum detectable absorbance of 1.7×10-5 cm-1 Hz-1/2, the system is applicable down to an H2O concentration of 0.1 % at 1000 K and 20 cm path length (200 ppm·m). The temperature in a water-seeded lab-scale reactor (670-1220 K at 4 % H2O) was determined within an accuracy of 1 % by comparison with the reactor thermocouple. The CF-WMS sensor was applied to real- time in situ measurements of H2O concentration and temperature time histories (0.25 s time resolution) in the hot gases 2 to 11 mm above biomass pellets during atmospheric combustion in the reactor. Temperatures between 1200 and 1600 K and H2O concentrations up to 40 % were detected above the biofuels. 

  • 18.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Low-cost TDLAS sensor for real-time in-situ temperature and H2O measurements in biomass combustion applications2014In: Field Laser Applications in Industry and Research, May 5-9, 2014, Florence, Italy, 2014Conference paper (Refereed)
  • 19.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Quantitative in-situ detection of potassium (K) atoms released from burning biomass particles using a real-time TDLAS sensor2014In: Field Laser Applications in Industry and Research, May 5-9, 2014, Florence, Italy, 2014Conference paper (Refereed)
  • 20.
    Qu, Zhechao
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Steinvall, Erik
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ghorbani, Ramin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions2016In: Analytical Chemistry, ISSN 0003-2700, E-ISSN 1520-6882, Vol. 88, no 7, p. 3754-3760Article in journal (Refereed)
    Abstract [en]

    Potassium (K) is an important element related to ash and fine-particle formation in biomass combustion processes. In situ measurements of gaseous atomic potassium, K(g), using robust optical absorption techniques can provide valuable insight into the K chemistry. However, for typical parts per billion K(g) concentrations in biomass flames and reactor gases, the product of atomic line strength and absorption path length can give rise to such high absorbance that the sample becomes opaque around the transition line center. We present a tunable diode laser atomic absorption spectroscopy (TDLAAS) methodology that enables accurate, calibration-free species quantification even under optically thick conditions, given that Beer−Lambert’s law is valid. Analyte concentration and collisional line shape broadening are simultaneously determined by a least-squares fit of simulated to measured absorption profiles. Method validation measurements of K(g) concentrations in saturated potassium hydroxide vapor in the temperature range 950−1200 K showed excellent agreement with equilibrium calculations, and a dynamic range from 40 pptv cm to 40 ppmv cm. The applicability of the compact TDLAAS sensor is demonstrated by real-time detection of K(g) concentrations close to biomass pellets during atmospheric combustion in a laboratory reactor. 

  • 21.
    Rutkowski, Lucile
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Johansson, Alexandra C.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Khodabakhsh, Amir
    Kyuberis, Aleksandra A.
    Zobov, Nikolai F.
    Polyansky, Oleg L.
    Yurchenko, Sergei N.
    Tennyson, Jonathan
    An experimental water line list at 1950 K in the 6250–6670 cm−1 region2018In: Journal of Quantitative Spectroscopy and Radiative Transfer, ISSN 0022-4073, E-ISSN 1879-1352, Vol. 205, p. 213-219Article in journal (Refereed)
    Abstract [en]

    An absorption spectrum of (H2O)-O-16 at 1950 K is recorded in a premixed methane/air flat flame using a cavity-enhanced optical frequency comb-based Fourier transform spectrometer. 2417 absorption lines are identified in the 6250-6670 cm(-1) region with an accuracy of about 0.01 cm(-1). Absolute line intensities are retrieved using temperature and concentration values obtained by tunable diode laser absorption spectroscopy. Line assignments are made using a combination of empirically known energy levels and predictions from the new POKAZATEL variational line list. 2030 of the observed lines are assigned to 2937 transitions, once blends are taken into account. 126 new energy levels of (H2O)-O-16 are identified. The assigned transitions belong to 136 bands and span rotational states up to J = 27.

  • 22.
    Rutkowski, Lucile
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Johansson, Alexandra C.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Khodabakhsh, Amir
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Valiev, Damir
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lodi, Lorenzo
    Yurchenko, Sergey
    Polyansky, Oleg L.
    Tennyson, Jonathan
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Detection of OH and H2O in an Atmospheric Flame by Near-Infrared Optical Frequency Comb Spectroscopy2017In: 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), IEEE, 2017Conference paper (Refereed)
    Abstract [en]

    Absorption spectroscopy is attractive for combustion diagnostics because it allows in-situ and calibration-free quantification of reactants/products and thermometry. However, spectra measured at atmospheric pressure in the near-infrared telecom range, where laser sources and optical components are readily available, suffer from strong water interference. Cavity-enhanced optical frequency comb spectroscopy (CE-OFCS) is well suited for detection of other species, as it provides broad bandwidth with high signal-to-noise ratio and resolution, and allows de-convolving the spectra hidden among water transitions. Here we report detection of OH in the presence of H2O in an atmospheric premixed methane/air flat flame by CE-OFCS at 1.57 μm. We demonstrate a new water line list that is more accurate than HITEMP [1] and we isolate the OH lines by dividing spectra taken at different heights above the burner (HABs) to retrieve OH concentration and flame temperature.

  • 23.
    Rutkowski, Lucile
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Johansson, Alexandra C.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Valiev, Damir
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Khodabakhsh, Amir
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tkacz, Arkadiusz
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Detection of OH in an atmospheric flame at 1.5 μm using optical frequency comb spectroscopy2016In: Photonics Letters of Poland, ISSN 2080-2242, E-ISSN 2080-2242, Vol. 8, no 4, p. 110-112Article in journal (Refereed)
    Abstract [en]

    We report broadband detection of OH in a premixed CH4/air flat flame at atmospheric pressure using cavity-enhanced absorption spectroscopy based on an Er:fiber femtosecond laser and a Fourier transform spectrometer. By taking ratios of spectra measured at different heights above the burner we separate twenty OH transitions from the largely overlapping water background. We retrieve from fits to the OH lines the relative variation of OH concentration and flame temperature with a height above the burner and compare them with the 1D simulations of flame structure.

  • 24.
    Schmidt, Florian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Foltynowicz-Matyba, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ma, Weiguang
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lock, Tomas
    Axner, Ove
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Doppler-broadened fiber-laser-based NICE-OHMS: improved detectability2007In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 15, no 17, p. 10822-10831Article in journal (Refereed)
    Abstract [en]

    The performance of fiber-laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) has been improved by elimination of the technical constraints that limited its first demonstration. Doppler-broadened detection of C2H2 and CO2 at ~1531 nm is demonstrated using a cavity with a finesse of 4800. Frequency and wavelength modulated detection at absorption and dispersion phase are compared and the optimum mode of detection is discussed. A minimum detectable absorption of 8 × 10-11 cm-1, which corresponds to a detection limit of 4.5 ppt (2 ppt·m) for C2H2, was obtained for an acquisition time of 0.7 s by lineshape fitting. The linearity of the pressure dependence of the signal strengths is investigated for both C2H2 and CO2.

  • 25.
    Schmidt, Florian M.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ma, Weiguang
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Axner, Ove
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Highly sensitive dispersion spectroscopy by probing the free spectral range of an optical cavity using dual-frequency modulation2010In: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 101, no 3, p. 497-509Article in journal (Refereed)
    Abstract [en]

    Dual-frequency modulation (DFM) has been used to continuously track the frequency shifts of optical cavity modes in the vicinity of an optical transition of a gas inside the cavity for assessment of the gas concentration. A theoretical description of the size and lineshape of the DFM dispersion spectroscopy (DFM-DS) signal is given. Since the signal is measured in terms of a radio frequency the technique is insensitive to laser intensity fluctuations. The signal strength, which can accurately be obtained by curve fitting, only depends on fundamental parameters (including the line strength), thus enabling quantitative detection without calibration procedure. In a first demonstration, using a compact setup based on a narrowband fiber laser, the change in free spectral range around a value of 379.9 MHz due to an acetylene transition near 1531 nm was measured with a resolution of 6 Hz (i.e. with an accuracy of 1.5 parts in 10(8)) in 12.5 s acquisition time, which corresponds to a minimum detectable integrated absorption (SNR=3) of 3x10(-9) cm(-1)

  • 26.
    Schmidt, Florian M.
    et al.
    University of Helsinki.
    Metsälä, Markus
    Vaittinen, Olavi
    Halonen, Lauri
    Background levels and diurnal variations of hydrogen cyanide in breath and emitted from skin2011In: Journal of Breath Research, ISSN 1752-7163, Vol. 5, no 4, article id 046004Article in journal (Refereed)
    Abstract [en]

    The hydrogen cyanide (HCN) concentration in exhaled human breath and skin gas samples collected with different sampling techniques was measured using near-infrared cavity ring-down spectroscopy. The median baseline HCN concentrations in samples provided by 19 healthy volunteers 2-4 h after the last meal depended on the employed sampling technique: 6.5 parts per billion by volume (ppbv) in mixed (dead space and end-tidal) mouth-exhaled breath collected to a gas sampling bag, 3.9 ppbv in end-tidal mouth-exhaled breath, 1.3 ppbv in end-tidal nose-exhaled breath, 1.0 ppbv in unwashed skin and 0.6 ppbv in washed skin samples. Diurnal measurements showed that elevated HCN levels are to be expected in mouth-exhaled breath samples after food and drink intake, which suggests HCN generation in the oral cavity. The HCN concentrations in end-tidal nose-exhaled breath and skin gas samples were correlated, and it is concluded that these concentrations best reflect systemic HCN levels.

  • 27.
    Schmidt, Florian M.
    et al.
    University of Helsinki.
    Vaittinen, O.
    Metsala, M.
    Kraus, P.
    Halonen, L.
    Direct detection of acetylene in air by continuous wave cavity ring-down spectroscopy2010In: Applied physics. B, Lasers and optics (Print), ISSN 0946-2171, E-ISSN 1432-0649, Vol. 101, no 3, p. 671-682Article in journal (Refereed)
    Abstract [en]

    Diode laser-based continuous wave cavity ring-down spectroscopy (cw-CRDS) in the near-infrared region has been used to measure the mixing ratio of acetylene (C(2)H(2)) in ambient air. Detection limits of 120 parts per trillion by volume (pptv) for 20 min and 340 pptv for 70 s acquisition time were achieved without sample pre-concentration, measuring on a C(2)H(2) absorption line at 6565.620 cm(-1) (similar to 1523 nm). Several indoor and outdoor air samples were collected at different locations in the Helsinki metropolitan area and analyzed using static-cell measurements. In addition, flow measurements of indoor and outdoor air have been performed continuously over several days with a time resolution of down to one minute. Baseline acetylene levels in the range of 0.4 to 3 parts per billion by volume (ppbv), with a maximum around midday and a minimum during the night, were measured. Sudden high mixing ratios of up to 60 ppbv were observed in outdoor air during daytime on a minute time scale. In general, the indoor mixing ratios were found to be higher than those in outdoor air. The acetylene levels correlated with the ambient CO levels and with outdoor temperature.

  • 28.
    Schmidt, Florian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Vaittinen, Olavi
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Metsälä, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lehto, Markku
    Forsblom, C.
    Groop, P-H
    Halonen, Lauri
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ammonia in breath and emitted from skin2013In: Journal of Breath Research, ISSN 1752-7155, E-ISSN 1752-7163, Vol. 7, no 1, article id 017109Article in journal (Refereed)
    Abstract [en]

    Ammonia concentrations in exhaled breath (eNH(3)) and skin gas of 20 healthy subjects were measured on-line with a commercial cavity ring-down spectrometer and compared to saliva pH and plasma ammonium ion (NH4+), urea and creatinine concentrations. Special attention was given to mouth, nose and skin sampling procedures and the accurate quantification of ammonia in humid gas samples. The obtained median concentrations were 688 parts per billion by volume (ppbv) for mouth-eNH(3), 34 ppbv for nose-eNH3, and 21 ppbv for both mouth-and nose-eNH(3) after an acidic mouth wash (MW). The median ammonia emission rate from the lower forearm was 0.3 ng cm(-2) min(-1). Statistically significant (p < 0.05) correlations between the breath, skin and plasma ammonia/ammonium concentrations were not found. However, mouth-eNH(3) strongly (p < 0.001) correlated with saliva pH. This dependence was also observed in detailed measurements of the diurnal variation and the response of eNH(3) to the acidic MW. It is concluded that eNH(3) as such does not reflect plasma but saliva and airway mucus NH4+ concentrations and is affected by saliva and airway mucus pH. After normalization with saliva pH using the Henderson-Hasselbalch equation, mouth-eNH(3) correlated with plasma NH4+, which points to saliva and plasma NH4+ being linked via hydrolysis of salivary urea.

  • 29. Sepman, Alexey
    et al.
    Ögren, Yngve
    Qu, Zhechao
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Wiinikka, Henrik
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Umeå University.
    Real-time in situ multi-parameter TDLAS sensing in the reactor core of an entrained-flow biomass gasifier2017In: Proceedings of the Combustion Institute, ISSN 1540-7489, E-ISSN 1873-2704, Vol. 36, no 3, p. 4541-4548Article in journal (Refereed)
    Abstract [en]

    Tunable diode laser absorption spectroscopy (TDLAS) was used to measure several important process parameters at two different locations inside the reactor of an atmospheric, air-blown 0.1 MWth biomass gasifier. Direct TDLAS at 2298 nm was employed for carbon monoxide (CO) and water vapor (H2O), calibration-free scanned wavelength modulation spectroscopy at 1398 nm for H2O and gas temperature, and direct TDLAS at 770 nm for gaseous elemental potassium, K(g), under optically thick conditions. These constitute the first in situ measurements of K(g) and temperature in a reactor core and in biomass gasification, respectively. In addition, soot volume fractions were determined at all TDLAS wavelengths, and employing fixed-wavelength laser extinction at 639 nm. Issues concerning the determination of the actual optical path length, as well as temperature and species non-uniformities along the line-of-sight are addressed. During a 2-day measurement campaign, peat and stem wood powder were first combusted at an air equivalence ratio (lambda) of 1.2 and then gasified at lambdas of 0.7, 0.6, 0.5, 0.4 and 0.35. Compared to uncorrected thermocouple measurements in the gas stream, actual average temperatures in the reactor core were significantly higher. The CO concentrations at the lower optical access port were comparable to those obtained by gas chromatography at the exhaust. In gasification mode, similar H2O values were obtained by the two different TDLAS instruments. The measured K(g) concentrations were compared to equilibrium calculations. Overall, the reaction time was found to be faster for peat than for stem wood. All sensors showed good performance even in the presence of high soot concentrations, and real-time detection was useful in resolving fast, transient behaviors, such as changes in stoichiometry. Practical implications of in-situ TDLAS monitoring on the understanding and control of gasification processes are discussed.

  • 30. Vaittinen, Olavi
    et al.
    Schmidt, Florian M.
    Metsälä, Markus
    Halonen, Lauri
    Exhaled breath biomonitoring using laser spectroscopy2013In: Current Analytical Chemistry, ISSN 1573-4110, E-ISSN 1875-6727, Vol. 9, no 3, p. 463-475Article in journal (Refereed)
    Abstract [en]

    Biological monitoring usually relies on the collection of blood and urine samples. Although being non-invasive and providing an inextinguishable sampling pool, the analysis of exhaled breath is not well established. A gas phase measurement is, however, inherently simpler than the analysis of complex biological fluids, and modern methods have identified hundreds of volatile compounds in the breath of persons exposed to normal environmental concentrations. The most commonly deployed analytical techniques in breath analysis are gas chromatography combined with mass spectrometry (GC/MS) and other MS-based methods. Lately, also laser-based optical methods, such as cavity ring-down spectroscopy (CRDS), have emerged in the field. With such instruments, it is possible to accurately quantify the concentrations of volatiles in exhaled breath down to below part-per-billion (ppb) levels with sub-second time resolution. Laser spectroscopy thereby enables real-time investigations during and after exposure to exogenous chemicals. In general, depending on the sampling approach used, the measured levels of the breath compounds may vary significantly. It is therefore of importance to systematically study and account for the phenomena affecting the recorded concentrations, and subsequently select an appropriate sampling and measurement strategy. In Helsinki, we have used CRDS to study the background levels of hydrogen cyanide (HCN), ammonia (NH3) and acetylene (C2H2) in the exhaled breath of healthy volunteers. Different sampling techniques have been employed in an effort to standardize the breath sampling event. The realtime elimination kinetics of breath C2H2 after smoking has also been studied.

  • 31.
    Wagner, David R.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Zhechao, Qu
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Florian, Schmidt
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Validation of reacting flow models via tunable diode laser absorption spectroscopy2014In: Impacts of Fuel Quality on Power Production October 26 –31, 2014, Snowbird, Utah, USA, 2014Conference paper (Other academic)
  • 32.
    Zhao, Gang
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. State Key Laboratory of Quantum Optics & Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 030006 Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006 Taiyuan, China.
    Hausmaninger, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ma, Weiguang
    State Key Laboratory of Quantum Optics & Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 030006 Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006 Taiyuan, China.
    Axner, Ove
    Umeå University, Faculty of Science and Technology, Department of Physics.
    High resolution ultra-sensitive trace gas detection by use of cavity-position-modulated sub-Doppler NICE-OHMS - Application to detection of acetylene in human breathManuscript (preprint) (Other academic)
    Abstract [en]

    A sensitive high resolution spectrometer for trace gas detection of species whose transitions have severe spectral overlap with abundant concomitant species by sub-Doppler (sD) noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS) is presented. The setup is based on a NICE-OHMS instrumentation utilizing balanced detection that provides shot-noise limited Doppler-broadened (Db) detection. An additional layer of modulation is added to reduce the influence of narrow etalons and improve the sensitivity for sD detection. By dithering synchronously the positions of the two cavity mirrors, the effect of residual etalons between one of the cavity mirrors and another surface in the system could be reduced without affecting the frequencies of the cavity mode. This reduced the drifts in the system, allowing for an Allan deviation of the absorption coefficient of 2.2×10−13 cm−1 for an integration time of 60 s, which, for the targeted C2H2 transition at 6518.4858 cm−1, corresponds to a 3σ detection sensitivity of 130 ppt. Sub-Doppler trace gas detection is demonstrated by measuring ppb levels of C2H2 in the exhaled breath of smokers. A procedure was worked out for simultaneous detection of CO2, based on the Db response. It is shown that despite significant spectral interference from CO2, which precludes Db detection of C2H2 in breath, acetylene could be detected in breath from smokers with good spectral resolution by the use of sD NICE-OHMS.

  • 33.
    Zhao, Gang
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics. State Key Laboratory of Quantum Optics & Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 030006 Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006 Taiyuan, China .
    Hausmaninger, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics. National Metrology Institute VTT MIKES, Tekniikantie 1, FI-02044 VTT, Finland.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ma, Weiguang
    Axner, Ove
    Umeå University, Faculty of Science and Technology, Department of Physics.
    High-resolution trace gas detection by sub-Doppler noise-immune cavity-enhanced optical heterodyne molecular spectrometry: application to detection of acetylene in human breath2019In: Optics Express, ISSN 1094-4087, E-ISSN 1094-4087, Vol. 27, no 13, p. 17940-17953Article in journal (Refereed)
    Abstract [en]

    A sensitive high-resolution sub-Doppler detecting spectrometer, based on noise-immune cavity-enhanced optical heterodyne molecular spectrometry (NICE-OHMS), for trace gas detection of species whose transitions have severe spectral overlap with abundant concomitant species is presented. It is designed around a NICE-OHMS instrumentation utilizing balanced detection that provides shot-noise limited Doppler-broadened (Db) detection. By synchronous dithering the positions of the two cavity mirrors, the effect of residual etalons between the cavity and other surfaces in the system could be reduced. An Allan deviation of the absorption coefficient of 2.2 × 10-13 cm-1 at 60 s, which, for the targeted transition in C2H2, corresponds to a 3σ detection sensitivity of 130 ppt, is demonstrated. It is shown that despite significant spectral interference from CO2 at the targeted transition, which precludes Db detection of C2H2, acetylene could be detected in exhaled breath of healthy smokers.

  • 34. Ögren, Yngve
    et al.
    Sepman, Alexey
    Qu, Zhechao
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Wiinikka, Henrik
    Comparison of measurement techniques for temperature and soot concentration in premixed, small-scale burner flames2017In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 31, no 10, p. 11328-11336Article in journal (Refereed)
    Abstract [en]

    Optical and intrusive measurement techniques for temperature and soot concentration in hot reacting flows were tested on a small-scale burner in fuel-rich, oxygen-enriched atmospheric flat flames produced to simulate the environment inside an entrained flow reactor. The optical techniques comprised two-color pyrometry (2C-PYR), laser extinction (LE), and tunable diode laser absorption spectroscopy (TDLAS), and the intrusive methods included fine-wire thermocouple thermometry (TC) and electrical low pressure impactor (ELPI) particle analysis. Vertical profiles of temperature and soot concentration were recorded in flames with different equivalence and O2/N2 ratios. The 2C-PYR and LE data were derived assuming mature soot. Gas temperatures up to 2200 K and soot concentrations up to 3 ppmv were measured. Close to the burner surface, the temperatures obtained with the pyrometer were up to 300 K higher than those measured by TDLAS. Further away from the burner, the difference was within 100 K. The TC-derived temperatures were within 100 K from the TDLAS results for most of the flames. At high signal-to-noise ratio and in flame regions with mature soot, the temperatures measured by 2C-PYR and TDLAS were similar. The soot concentrations determined with 2C-PYR were close to those obtained with LE but lower than the ELPI results. It is concluded that the three optical techniques have good potential for process control applications in combustion and gasification processes. 2C-PYR offers simpler installation and 2D imaging, whereas TDLAS and LE provide better accuracy and dynamic range without calibration procedures.

1 - 34 of 34
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf