umu.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson-Evelönn, Emma
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Köhn, Linda
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Ljungberg, Börje
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Urology and Andrology.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    DNA methylation associates with survival in non-metastatic clear cell renal cell carcinoma2019In: BMC Cancer, ISSN 1471-2407, E-ISSN 1471-2407, Vol. 19, article id 65Article in journal (Refereed)
    Abstract [en]

    Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cancer and is associated with poor prognosis if metastasized. Up to one third of patients with local disease at diagnosis will develop metastasis after nephrectomy, and there is a need for new molecular markers to identify patients with high risk of tumor progression. In the present study, we performed genome-wide promoter DNA methylation analysis at diagnosis to identify DNA methylation profiles associated with risk for progress.

    Method: Diagnostic tissue samples from 115 ccRCC patients were analysed by Illumina HumanMethylation450K arrays and methylation status of 155,931 promoter associated CpGs were related to genetic aberrations, gene expression and clinicopathological parameters.

    Results: The ccRCC samples separated into two clusters (cluster A/B) based on genome-wide promoter methylation status. The samples in these clusters differed in tumor diameter (p < 0.001), TNM stage (p < 0.001), morphological grade (p < 0.001), and patients outcome (5 year cancer specific survival (pCSS5yr) p < 0.001 and cumulative incidence of progress (pCIP5yr) p < 0.001. An integrated genomic and epigenomic analysis in the ccRCCs, revealed significant correlations between the total number of genetic aberrations and total number of hypermethylated CpGs (R = 0.435, p < 0.001), and predicted mitotic age (R = 0.407, p < 0.001). We identified a promoter methylation classifier (PMC) panel consisting of 172 differently methylated CpGs accompanying progress of disease. Classifying non-metastatic patients using the PMC panel showed that PMC high tumors had a worse prognosis compared with the PMC low tumors (pCIP5yr 38% vs. 8%, p = 0.001), which was confirmed in non-metastatic ccRCCs in the publically available TCGA-KIRC dataset (pCIP5yr 39% vs. 16%, p < 0.001).

    Conclusion: DNA methylation analysis at diagnosis in ccRCC has the potential to improve outcome-prediction in non-metastatic patients at diagnosis.

  • 2.
    Borssén, Magnus
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Norén-Nyström, Ulrika
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Paediatrics.
    Schmiegelow, Kjeld
    Åsberg, Ann E.
    Kanerva, Jukka
    Madsen, Hans O.
    Marquart, Hanne
    Heyman, Mats
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Roos, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Forestier, Erik
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology. Department of Paediatrics, University Hospital of Trondheim, Norway.
    DNA Methylation Adds Prognostic Value to Minimal Residual Disease Status in Pediatric T-Cell Acute Lymphoblastic Leukemia2016In: Pediatric Blood & Cancer, ISSN 1545-5009, E-ISSN 1545-5017, Vol. 63, no 7, p. 1185-1192Article in journal (Refereed)
    Abstract [en]

    Background. Despite increased knowledge about genetic aberrations in pediatric T-cell acute lymphoblastic leukemia (T-ALL), no clinically feasible treatment-stratifying marker exists at diagnosis. Instead patients are enrolled in intensive induction therapies with substantial side effects. In modern protocols, therapy response is monitored by minimal residual disease (MRD) analysis and used for postinduction risk group stratification. DNA methylation profiling is a candidate for subtype discrimination at diagnosis and we investigated its role as a prognostic marker in pediatric T-ALL. Procedure. Sixty-five diagnostic T-ALL samples from Nordic pediatric patients treated according to the Nordic Society of Pediatric Hematology and Oncology ALL 2008 (NOPHO ALL 2008) protocol were analyzed by HumMeth450K genome wide DNA methylation arrays. Methylation status was analyzed in relation to clinical data and early T-cell precursor (ETP) phenotype. Results. Two distinct CpG island methylator phenotype (CIMP) groups were identified. Patients with a CIMP-negative profile had an inferior response to treatment compared to CIMP-positive patients (3-year cumulative incidence of relapse (CIR3y) rate: 29% vs. 6%, P = 0.01). Most importantly, CIMP classification at diagnosis allowed subgrouping of high-risk T-ALL patients (MRD >= 0.1% at day 29) into two groups with significant differences in outcome (CIR3y rates: CIMP negative 50% vs. CIMP positive 12%; P = 0.02). These groups did not differ regarding ETP phenotype, but the CIMP-negative group was younger (P = 0.02) and had higher white blood cell count at diagnosis (P = 0.004) compared with the CIMP-positive group. Conclusions. CIMP classification at diagnosis in combination with MRD during induction therapy is a strong candidate for further risk classification and could confer important information in treatment decision making.

  • 3.
    Borssén, Magnus
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Nordlund, Jessica
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Larsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Kanerva, Jukka
    Schmiegelow, Kjeld
    Flaegstad, Trond
    Jónsson, Ólafur Gísli
    Frost, Britt-Marie
    Palle, Josefine
    Forestier, Erik
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Heyman, Mats
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Lönnerholm, Gudmar
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia2018In: Clinical Epigenetics, E-ISSN 1868-7083, Vol. 10, article id 31Article in journal (Refereed)
    Abstract [en]

    Background: Few biological markers are associated with survival after relapse of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). In pediatric T-cell ALL, we have identified promoter-associated methylation alterations that correlate with prognosis. Here, the prognostic relevance of CpG island methylation phenotype (CIMP) classification was investigated in pediatric BCP-ALL patients.

    Methods: Six hundred and one BCP-ALL samples from Nordic pediatric patients (age 1-18) were CIMP classified at initial diagnosis and analyzed in relation to clinical data.

    Results: Among the 137 patients that later relapsed, patients with a CIMP-profile (n = 42) at initial diagnosis had an inferior overall survival (pOS(5years) 33%) compared to CIMP+ patients (n = 95, pOS(5years) 65%) (p = 0.001), which remained significant in a Cox proportional hazards model including previously defined risk factors.

    Conclusion: CIMP classification is a strong candidate for improved risk stratification of relapsed BCP-ALL.

  • 4.
    Degerman, Sofie
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Josefsson, Maria
    Umeå University, Faculty of Social Sciences, Centre for Demographic and Ageing Research (CEDAR).
    Nordin Adolfsson, Annelie
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry.
    Wennstedt, Sigrid
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Pudas, Sara
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Nyberg, Lars
    Umeå University, Faculty of Medicine, Umeå Centre for Functional Brain Imaging (UFBI). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Adolfsson, Rolf
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Psychiatry.
    Maintained memory in aging is associated with young epigenetic age2017In: Neurobiology of Aging, ISSN 0197-4580, E-ISSN 1558-1497, Vol. 55, p. 167-171Article in journal (Refereed)
    Abstract [en]

    Epigenetic alterations during aging have been proposed to contribute to decline in physical and cognitive functions, and accelerated epigenetic aging has been associated with disease and all-cause mortality later in life. In this study, we estimated epigenetic age dynamics in groups with different memory trajectories (maintained high performance, average decline, and accelerated decline) over a 15-year period. Epigenetic (DNA-methylation [DNAm]) age was assessed, and delta age (DNAm age - chronological age) was calculated in blood samples at baseline (age: 55-65 years) and 15 years later in 52 age- and gender-matched individuals from the Betula study in Sweden. A lower delta DNAm age was observed for those with maintained memory functions compared with those with average (p = 0.035) or accelerated decline (p = 0.037). Moreover, separate analyses revealed that DNAm age at follow-up, but not chronologic age, was a significant predictor of dementia (p = 0.019). Our findings suggest that young epigenetic age contributes to maintained memory in aging.

  • 5.
    Haider, Zahra
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    DNA methylation signatures in precursor lymphoid neoplasms: with focus on clinical implications &  the biology behind2019Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Precursor lymphoid neoplasms, namely acute lymphoblastic leukemias (ALL) and lymphoblastic lymphomas (LBL), are characterized by an aggressive proliferation of malignant progenitor B- or T-cells. To improve risk classification at diagnosis, better prognostic and treatment stratifying biomarkers are needed. Altered DNA methylation pattern is a hallmark of neoplastic transformation, and has been employed as a molecular prognostic and predictive marker in various cancers, including hematological malignancies. Our research group previously identified a CpG island methylator phenotype (CIMP) panel that classified pediatric T-ALL patients into prognostic subgroups.

    The aim of this thesis was to evaluate distinct DNA methylation signatures in precursor lymphoid neoplasms, and to validate the prognostic value of CIMP classification in separate patient cohorts. Additionally, the biological mechanisms underlying the distinct CIMP methylation signatures in these malignancies were investigated.

    The prognostic relevance of CIMP classification was validated in an independent Nordic cohort of pediatric T-ALL patients. Combination of CIMP status with minimal residual disease (MRD) status, could further dissect the high-risk MRD positive T-ALL patients into two CIMP subgroups with significantly distinct outcomes. Furthermore, CIMP classification at diagnosis was shown to predict overall survival in relapsed BCP-ALL patients. CIMP methylation signatures were also identified in T-LBL patients, indicating a broader relevance of CIMP based classification in lymphoid malignancies. Investigating the biology behind CIMP methylation signatures showed the association of CIMP status with the proliferative history of the leukemic cells. A differential transcriptomic analysis revealed a correlation of CIMP subgroups with known T-ALL drivers, as well as with novel genes in T-ALL biology. Finally, we identified distinct DNA methylation patterns and genetic aberrations in T-ALL and T-LBL that might contribute to the different clinical presentation of these two diseases. In conclusion, we validated the prognostic significance of CIMP methylation signature in precursor lymphoid malignancies and identified transcriptomic profiles that associated with the subgroups. DNA methylation is a strong candidate for further risk classification in lymphoid neoplasms and our findings can contribute to the identification of new potential targets for treatment.

  • 6.
    Haider, Zahra
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Golovleva, Irina
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Erlanson, Martin
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Oncology.
    Noren-Nyström, Ulrika
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Epigenetic and genetic distinctions between T-cell acute lymphoblastic leukemia and lymphomaManuscript (preprint) (Other academic)
  • 7.
    Haider, Zahra
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Larsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Landfors, Mattias
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Köhn, Linda
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology. Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Schmiegelow, Kjeld
    Flaegstad, Trond
    Kanerva, Jukka
    Heyman, Mats
    Hultdin, Magnus
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Degerman, Sofie
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression2019In: Cancer Medicine, ISSN 2045-7634, E-ISSN 2045-7634, Vol. 8, no 1, p. 311-324Article in journal (Refereed)
    Abstract [en]

    Classification of pediatric T‐cell acute lymphoblastic leukemia (T‐ALL) patients into CIMP (CpG Island Methylator Phenotype) subgroups has the potential to improve current risk stratification. To investigate the biology behind these CIMP subgroups, diagnostic samples from Nordic pediatric T‐ALL patients were characterized by genome‐wide methylation arrays, followed by targeted exome sequencing, telomere length measurement, and RNA sequencing. The CIMP subgroups did not correlate significantly with variations in epigenetic regulators. However, the CIMP+ subgroup, associated with better prognosis, showed indicators of longer replicative history, including shorter telomere length (P = 0.015) and older epigenetic (P < 0.001) and mitotic age (P < 0.001). Moreover, the CIMP+ subgroup had significantly higher expression of ANTP homeobox oncogenes, namely TLX3, HOXA9, HOXA10, and NKX2‐1, and novel genes in T‐ALL biology including PLCB4, PLXND1, and MYO18B. The CIMP− subgroup, with worse prognosis, was associated with higher expression of TAL1 along with frequent STIL‐TAL1 fusions (2/40 in CIMP+ vs 11/24 in CIMP−), as well as stronger expression of BEX1. Altogether, our findings suggest different routes for leukemogenic transformation in the T‐ALL CIMP subgroups, indicated by different replicative histories and distinct methylomic and transcriptomic profiles. These novel findings can lead to new therapeutic strategies.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf