umu.sePublications
Change search
Refine search result
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Carlborg, Markus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Weiland, Fredrik
    Ma, Charlie
    Backman, Rainer
    Landälv, Ingvar
    Wiinikka, Henrik
    Exposure of refractory materials during high-temperature gasification of a woody biomass and peat mixture2018In: Journal of the European Ceramic Society, ISSN 0955-2219, E-ISSN 1873-619X, Vol. 38, no 2, p. 777-787Article in journal (Refereed)
    Abstract [en]

    Finding resilient refractory materials for slagging gasification systems have the potential to reduce costs and improve the overall plant availability by extending the service life. In this study, different refractory materials were evaluated under slagging gasification conditions. Refractory probes were continuously exposed for up to 27 h in an atmospheric, oxygen blown, entrained flow gasifier fired with a mixture of bark and peat powder. Slag infiltration depth and microstructure were studied using SEM EDS. Crystalline phases were identified with powder XRD. Increased levels of Al, originating from refractory materials, were seen in all slags. The fused cast materials were least affected, even though dissolution and slag penetration could still be observed. Thermodynamic equilibrium calculations were done for mixtures of refractory and slag, from which phase assemblages were predicted and viscosities for the liquid parts were estimated.

  • 2. Ma, Charlie
    et al.
    Carlborg, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Hedman, Henry
    Wennebro, Jonas
    Weiland, Fredrik
    Wiinikka, Henrik
    Backman, Rainer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ohman, Marcus
    Ash Formation in Pilot-Scale Pressurized Entrained-Flow Gasification of Bark and a Bark/Peat Mixture2016In: Energy & Fuels, ISSN 0887-0624, E-ISSN 1520-5029, Vol. 30, no 12, p. 10543-10554Article in journal (Refereed)
    Abstract [en]

    Pressurized entrained-flow gasification (PEFG) of bark and a bark/peat mixture (BPM) was carried out in a pilot scale reactor (600 kW(th), 7 bar(a)) with the objective of studying ash transformations and behaviors. The bark fuel produced a sintered but nonflowing reactor slag, while the BPM fuel produced a flowing reactor slag. Si was enriched within these slags compared to their original fuel ash compositions, especially in the bark campaign, which indicated extensive ash matter fractionation. Thermodynamically, the Si contents largely accounted for the differences in the predicted solidus/liquidus temperatures and melt formations of the reactor slags. Suspension flow viscosity estimations were in qualitative agreement with observations and highlighted potential difficulties in controlling slag flow. Quench solids from the bark campaign were mainly composed of heterogeneous particles resembling reactor fly ash particles, while those from the BPM campaign were flowing slags with likely chemical interactions with the wall refractory. Quench effluents and raw syngas particles were dominated by elevated levels of K that, along with other chemical aspects, indicated KOH(g) and/or K(g) were likely formed during PEFG. Overall, the results provide information toward development of woody biomass PEFG and indicate that detailed understanding of the ash matter fractionation behavior is essential.

  • 3.
    Strandberg, Anna
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Carlborg, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boman, Christoffer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ash formation and transformation during combustion of poplar wood pelletsManuscript (preprint) (Other academic)
1 - 3 of 3
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf