umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dahlberg, Tobias
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Stangner, Tim
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Hanqing, Zhang
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wiklund, Krister
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lundberg, Petter
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    3D printed water-soluble scaffolds for rapid production of PDMS micro-fluidic flow chambers2018In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 8, no 1, article id 3372Article in journal (Refereed)
    Abstract [en]

    We report a novel method for fabrication of three-dimensional (3D) biocompatible micro-fluidic flow chambers in polydimethylsiloxane (PDMS) by 3D-printing water-soluble polyvinyl alcohol (PVA) filaments as master scaffolds. The scaffolds are first embedded in the PDMS and later residue-free dissolved in water leaving an inscription of the scaffolds in the hardened PDMS. We demonstrate the strength of our method using a regular, cheap 3D printer, and evaluate the inscription process and the channels micro-fluidic properties using image analysis and digital holographic microscopy. Furthermore, we provide a protocol that allows for direct printing on coverslips and we show that flow chambers with a channel cross section down to 40 x 300 μm can be realized within 60 min. These flow channels are perfectly transparent, biocompatible and can be used for microscopic applications without further treatment. Our proposed protocols facilitate an easy, fast and adaptable production of micro-fluidic channel designs that are cost-effective, do not require specialized training and can be used for a variety of cell and bacterial assays. To help readers reproduce our micro-fluidic devices, we provide: full preparation protocols, 3D-printing CAD files for channel scaffolds and our custom-made molding device, 3D printer build-plate leveling instructions, and G-code.

  • 2.
    Enevold, Jenny
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Dahlberg, Tobias
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Stangner, Tim
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Lindh, E. Mattias
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Gracia-Espino, Eduardo
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tunable two-dimensional patterning of a semiconducting C60 fullerene film using a spatial light modulatorManuscript (preprint) (Other academic)
  • 3.
    Stangner, Tim
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Dahlberg, Tobias
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Svenmarker, Pontus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Zakrisson, Johan
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wiklund, Krister
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Oddershede, Lene B.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Cooke-Triplet-Tweezers: More compact, robust and efficient optical tweezers2018In: Optics Letters, ISSN 0146-9592, E-ISSN 1539-4794, Vol. 43, no 9, p. 1990-1993Article in journal (Refereed)
    Abstract [en]

    We present a versatile three-lens optical design to improve the overall compactness, efficiency, and robustness for optical tweezers based applications. The design, inspired by the Cooke–Triplet configuration, allows for continuous beam magnifications of 2–10× , and axial as well as lateral focal shifts can be realized without switching lenses or introducing optical aberrations. We quantify the beam quality and trapping stiffness and compare the Cooke–Triplet design with the commonly used double Kepler design through simulations and direct experiments. Optical trapping of 1 and 2 μm beads shows that the Cooke–Triplet possesses an equally strong optical trap stiffness compared to the double Kepler lens design but reduces its lens system length by a factor of 2.6. Finally, we demonstrate how a Twyman–Green interferometer integrated in the Cooke–Triplet optical tweezers setup provides a fast and simple method to characterize the wavefront aberrations in the lens system and how it can help in aligning the optical components perfectly.

  • 4.
    Stangner, Tim
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Hanqing, Zhang
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Tobias, Dahlberg
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Krister, Wiklund
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Step-by-step guide to reduce spatial coherence of laser light using a rotating ground glass diffuser2017In: Applied Optics, ISSN 1559-128X, E-ISSN 2155-3165, Vol. 56, no 19, p. 5427-5435Article in journal (Refereed)
    Abstract [en]

    Wide field-of-view imaging of fast processes in a microscope requires high light intensities motivating the use of lasers as light sources. However, due to their long spatial coherence length, lasers are inappropriate for such applications, as they produce coherent noise and parasitic reflections, such as speckle, degrading image quality. Therefore, we provide a step-by-step guide for constructing a speckle-free and high-contrast laser illumination setup using a rotating ground glass diffuser driven by a stepper motor. The setup is easy to build, cheap, and allows a significant light throughput of 48%, which is 40% higher in comparison to a single lens collector commonly used in reported setups. This is achieved by using only one objective to collect the scattered light from the ground glass diffuser. We validate our setup in terms of image quality, speckle contrast, motor-induced vibrations, and light throughput. To highlight the latter, we record Brownian motion of micro-particles using a 100x oil immersion objective and a high-speed camera operating at 2000 Hz with a laser output power of only 22 mW. Moreover, by reducing the objective magnification to 50x, sampling rates up to 10,000 Hz are realized. To help readers with basic or advanced optics knowledge realize this setup, we provide a full component list, 3D-printing CAD files, setup protocol, and the code for running the stepper motor.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf