umu.sePublikasjoner
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Hansbo, Peter
    et al.
    Jönköping University.
    Jonsson, Tobias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    A Nitsche method for elliptic problems on composite surfaces2017Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 326, s. 505-525Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a finite element method for elliptic partial differential equations on so called composite surfaces that are built up out of a finite number of surfaces with boundaries that fit together nicely in the sense that the intersection between any two surfaces in the composite surface is either empty, a point, or a curve segment, called an interface curve. Note that several surfaces can intersect along the same interface curve. On the composite surface we consider a broken finite element space which consists of a continuous finite element space at each subsurface without continuity requirements across the interface curves. We derive a Nitsche type formulation in this general setting and by assuming only that a certain inverse inequality and an approximation property hold we can derive stability and error estimates in the case when the geometry is exactly represented. We discuss several different realizations, including so called cut meshes, of the method. Finally, we present numerical examples.

  • 2.
    Jonsson, Tobias
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut finite element methods on parametric multipatch surfaces2019Licentiatavhandling, med artikler (Annet vitenskapelig)
  • 3.
    Jonsson, Tobias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Cut finite element methods for elliptic problems on multipatch parametric surfaces2017Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 324, s. 366-394Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a finite element method for the Laplace–Beltrami operator on a surface described by a set of patchwise parametrizations. The patches provide a partition of the surface and each patch is the image by a diffeomorphism of a subdomain of the unit square which is bounded by a number of smooth trim curves. A patchwise tensor product mesh is constructed by using a structured mesh in the reference domain. Since the patches are trimmed we obtain cut elements in the vicinity of the interfaces. We discretize the Laplace–Beltrami operator using a cut finite element method that utilizes Nitsche’s method to enforce continuity at the interfaces and a consistent stabilization term to handle the cut elements. Several quantities in the method are conveniently computed in the reference domain where the mappings impose a Riemannian metric. We derive a priori estimates in the energy and L2 norm and also present several numerical examples confirming our theoretical results.

  • 4.
    Jonsson, Tobias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larson, Mats G.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Larsson, Karl
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Graded Parametric CutFEM and CutIGA for Elliptic Boundary Value Problems in Domains with Corners2019Inngår i: Computer Methods in Applied Mechanics and Engineering, ISSN 0045-7825, E-ISSN 1879-2138, Vol. 354, s. 331-350Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We develop a parametric cut finite element method for elliptic boundary value problems with corner singularities where we have weighted control of higher order derivatives of the solution to a neighborhood of a point at the boundary. Our approach is based on identification of a suitable mapping that grades the mesh towards the singularity. In particular, this mapping may be chosen without identifying the opening angle at the corner. We employ cut finite elements together with Nitsche boundary conditions and stabilization in the vicinity of the boundary. We prove that the method is stable and convergent of optimal order in the energy norm and L2 norm. This is achieved by mapping to the reference domain where we employ a structured mesh.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf