umu.sePublications
Change search
Refine search result
1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alagna, F.
    et al.
    Caceres, M. E.
    Pandolfi, S.
    Collani, Silvio
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Mousavi, S.
    Mariotti, R.
    Cultrera, N. G. M.
    Baldoni, L.
    Barcaccia, G.
    The Paradox of Self-Fertile Varieties in the Context of Self-Incompatible Genotypes in Olive2019In: Frontiers in Plant Science, ISSN 1664-462X, E-ISSN 1664-462X, Vol. 10, article id 725Article, review/survey (Refereed)
    Abstract [en]

    Olive, representing one of the most important fruit crops of the Mediterranean area, is characterized by a general low fruit yield, due to numerous constraints, including alternate bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only recently, the genetic control of SI has been disclosed, revealing that olive possesses an unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other described plants. This system, characterized by the presence of two SI groups, prevents self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing the same incompatibility group are incompatible. Despite the presence of a functional SI, some varieties, in particular conditions, are able to set seeds following self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported in previous literature. Here, we summarize the results of previous works on SI in olive, particularly focusing on the occurrence of self-fertility, and offer a new perspective in view of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances in research aimed at unraveling the molecular bases of SI and its breakdown in olive are also presented. The clarification of these mechanisms may have a huge impact on orchard management and will provide fundamental information for the future of olive breeding programs.

  • 2. Capovilla, Giovanna
    et al.
    Delhomme, Nicolas
    Collani, Silvio
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany.
    Shutava, Iryna
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Bezrukov, Ilja
    Symeonidi, Efthymia
    Amorim, Marcella de Francisco
    Laubinger, Sascha
    Schmid, Markus
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany.
    PORCUPINE regulates development in response to temperature through alternative splicing2018In: Nature plants, ISSN 2055-026X, Vol. 4, no 8, p. 534-539Article in journal (Refereed)
    Abstract [en]

    Recent findings suggest that alternative splicing has a critical role in controlling the responses of plants to temperature variations. However, alternative splicing factors in plants are largely uncharacterized. Here we establish the putative splice regulator, PORCUPINE (PCP), as temperature-specific regulator of development in Arabidopsis thaliana. Our findings point to the misregulation of WUSCHEL and CLAVATA3 as the possible cause for the meristem defects affecting the pcp-1 loss-of-function mutants at low temperatures.

  • 3.
    Collani, Silvio
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology,Department of Molecular Biology, Tübingen, Germany.
    Neumann, Manuela
    Yant, Levi
    Schmid, Markus
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology,Department of Molecular Biology, Tübingen, Germany; Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People’s Republic of China.
    FT Modulates Genome-Wide DNA-Binding of the bZIP Transcription Factor FD2019In: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 180, no 1, p. 367-380Article in journal (Refereed)
    Abstract [en]

    The transition to flowering is a crucial step in the plant life cycle that is controlled by multiple endogenous and environmental cues, including hormones, sugars, temperature, and photoperiod. Permissive photoperiod induces the expression of FLOWERING LOCUS T (FT) in the phloem companion cells of leaves. The FT protein then acts as a florigen that is transported to the shoot apical meristem, where it physically interacts with the Basic Leucine Zipper Domain transcription factor FD and 14-3-3 proteins. However, despite the importance of FD in promoting flowering, its direct transcriptional targets are largely unknown. Here, we combined chromatin immunoprecipitation sequencing and RNA sequencing to identify targets of FD at the genome scale and assessed the contribution of FT to DNA binding. We further investigated the ability of FD to form protein complexes with FT and TERMINAL FLOWER1 through interaction with 14-3-3 proteins. Importantly, we observed direct binding of FD to targets involved in several aspects of plant development. These target genes were previously unknown to be directly related to the regulation of flowering time. Our results confirm FD as a central regulator of floral transition at the shoot meristem and provide evidence for crosstalk between the regulation of flowering and other signaling pathways, such as pathways involved in hormone signaling.

  • 4.
    Goretti, Daniela
    et al.
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Department of Biosciences, University of Milan, Via Celoria 26, Milan, Italy.
    Martignago, Damiano
    Landini, Martina
    Brambilla, Vittoria
    Gomez-Ariza, Jorge
    Gnesutta, Nerina
    Galbiati, Francesca
    Collani, Silvio
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Takagi, Hiroki
    Terauchi, Ryohei
    Mantovani, Roberto
    Fornara, Fabio
    Transcriptional and Post-transcriptional Mechanisms Limit Heading Date 1 (Hd1) Function to Adapt Rice to High Latitudes2017In: PLoS Genetics, ISSN 1553-7390, E-ISSN 1553-7404, Vol. 13, no 1, article id e1006530Article in journal (Refereed)
    Abstract [en]

    Rice flowering is controlled by changes in the photoperiod that promote the transition to the reproductive phase as days become shorter. Natural genetic variation for flowering time has been largely documented and has been instrumental to define the genetics of the photoperiodic pathway, as well as providing valuable material for artificial selection of varieties better adapted to local environments. We mined genetic variation in a collection of rice varieties highly adapted to European regions and isolated distinct variants of the long day repressor HEADING DATE 1 (Hd1) that perturb its expression or protein function. Specific variants allowed us to define novel features of the photoperiodic flowering pathway. We demonstrate that a histone fold domain scaffold formed by GRAIN YIELD, PLANT HEIGHT AND HEADING DATE 8 (Ghd8) and several NF-YC subunits can accommodate distinct proteins, including Hd1 and PSEUDO RESPONSE REGULATOR 37 (PRR37), and that the resulting OsNF-Y complex containing Hd1 can bind a specific sequence in the promoter of HEADING DATE 3A (Hd3a). Artificial selection has locally favored an Hd1 variant unable to assemble in such heterotrimeric complex. The causal polymorphism was defined as a single conserved lysine in the CCT domain of the Hd1 protein. Our results indicate how genetic variation can be stratified and explored at multiple levels, and how its description can contribute to the molecular understanding of basic developmental processes.

  • 5. Shanks, Carly M.
    et al.
    Hecker, Andreas
    Cheng, Chia-Yi
    Brand, Luise
    Collani, Silvio
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
    Schmid, Markus
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Schaller, G. Eric
    Wanke, Dierk
    Harter, Klaus
    Kieber, Joseph J.
    Role of BASIC PENTACYSTEINE transcription factors in a subset of cytokinin signaling responses2018In: The Plant Journal, ISSN 0960-7412, E-ISSN 1365-313X, Vol. 95, no 3, p. 458-473Article in journal (Refereed)
    Abstract [en]

    Cytokinin plays diverse roles in plant growth and development, generally acting by modulating gene transcription in target tissues. The type-B Arabidopsis response regulators (ARR) transcription factors have emerged as primary targets of cytokinin signaling and are required for essentially all cytokinin-mediated changes in gene expression. The diversity of cytokinin function is likely imparted by the activity of various transcription factors working with the type-B ARRs to alter specific sets of target genes. One potential set of co-regulators modulating the cytokinin response are the BARLEY B-RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family of plant-specific transcription factors. Here, we show that disruption of multiple BPCs results in reduced sensitivity to cytokinin. Further, the BPCs are necessary for the induction of a subset of genes in response to cytokinin. We identified direct invivo targets of BPC6 using ChIP-Seq and found an enrichment of promoters of genes differentially expressed in response to cytokinin. Further, a significant number of BPC6 regulated genes are also direct targets of the type-B ARRs. Potential cis-binding elements for a number of other transcription factors linked to cytokinin action are enriched in the BPC binding fragments, including those for the cytokinin response factors (CRFs). In addition, several BPCs interact with a subset of type-A ARRs. Consistent with these results, a significant number of genes whose expression is altered in bpc mutant roots are also mis-expressed in crf1,3,5,6 and type-A arr3,4,5,6,7,8,9,15 mutant roots. These results suggest that the BPCs are part of a complex network of transcription factors that are involved in the response to cytokinin.

  • 6. Speth, Corinna
    et al.
    Szabo, Emese Xochitl
    Martinho, Claudia
    Collani, Silvio
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    zur Oven-Krockhaus, Sven
    Richter, Sandra
    Droste-Borel, Irina
    Macek, Boris
    Stierhof, York-Dieter
    Schmid, Markus
    Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC). Umeå University, Faculty of Science and Technology, Department of Plant Physiology.
    Liu, Chang
    Laubinger, Sascha
    Arabidopsis RNA processing factor SERRATE regulates the transcription of intronless genes2018In: eLIFE, E-ISSN 2050-084X, Vol. 7, article id e37078Article in journal (Refereed)
    Abstract [en]

    Intron splicing increases proteome complexity, promotes RNA stability, and enhances transcription. However, introns and the concomitant need for splicing extend the time required for gene expression and can cause an undesirable delay in the activation of genes. Here, we show that the plant microRNA processing factor SERRATE (SE) plays an unexpected and pivotal role in the regulation of intronless genes. Arabidopsis SE associated with more than 1000, mainly intronless, genes in a transcription-dependent manner. Chromatin-bound SE liaised with paused and elongating polymerase II complexes and promoted their association with intronless target genes. Our results indicate that stress-responsive genes contain no or few introns, which negatively affects their expression strength, but that some genes circumvent this limitation via a novel SE-dependent transcriptional activation mechanism. Transcriptome analysis of a Drosophila mutant defective in ARS2, the metazoan homologue of SE, suggests that SE/ARS2 function in regulating intronless genes might be conserved across kingdoms.

1 - 6 of 6
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf