umu.sePublikasjoner
Endre søk
Begrens søket
1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Leffler, Klara
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Axelsson, Jan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.
    Larsson, Anne
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.
    Häggström, Ida
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper.
    Yu, Jun
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Sharper Positron Emission Tomography: Intelligent Data Sampling to Promote Accelerated Medical Imaging2019Konferansepaper (Annet vitenskapelig)
  • 2.
    Leffler, Klara
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Häggström, Ida
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Radiofysik.
    Yu, Jun
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Intelligent data sampling promotes accelerated medical imaging: sharper positron emission tomography2018Konferansepaper (Fagfellevurdert)
  • 3.
    Leffler, Klara
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Zhou, Zhiyong
    Department of Statistics, Zhejiang University City College, China.
    Yu, Jun
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    An extended block restricted isometry property for sparse recovery with non-Gaussian noise2019Inngår i: Journal of Computational Mathematics, ISSN 0254-9409, E-ISSN 1991-7139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We study the recovery conditions of weighted mixed ℓ2/ℓp minimization for block sparse signal reconstruction from compressed measurements when partial block supportinformation is available. We show theoretically that the extended block restricted isometry property can ensure robust recovery when the data fidelity constraint is expressed in terms of an ℓq norm of the residual error, thus establishing a setting wherein we arenot restricted to Gaussian measurement noise. We illustrate the results with a series of numerical experiments.

  • 4.
    Leffler, Klara
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Zhou, Zhiyong
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Yu, Jun
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    An Extended Block Restricted Isometry Property for Sparse Recovery with Non-Gaussian Noise2018Konferansepaper (Fagfellevurdert)
    Abstract [en]

    Recovering an unknown signal from significantly fewer measurements is a fundamental aspect in computational sciences today. The key ingredient is the sparsity of the unknown signal, a realisation that that has led to the theory of compressed censing, through which successful recovery of high dimensional (approximately) sparse signals is now possible at a rate significantly lower than the Nyquist sampling rate. Today, an interesting challenge lies in customizing the recovery process to take into account prior knowledge about e.g. signal structure and properties of present noise. We study recovery conditions for block sparse signal reconstruction from compressed measurements when partial support information is available via weighted mixed l2/lp minimization. We show theoretically that the extended block restricted isometry property can ensure robust recovery when the data fidelity constraint is expressed in terms of an lq norm of the residual error. Thereby, we also establish a setting wherein we are not restricted to a Gaussian measurement noise. The results are illustrated with a series of numerical experiments.

1 - 4 of 4
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf