umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Baranwal, Neha
    et al.
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Singh, Avinash
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Bensch, Suna
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Extracting Primary Objects and Spatial Relations from Sentences2019Conference paper (Refereed)
    Abstract [en]

    In verbal human-robot interaction natural language utterances have to be grounded in visual scenes by the robot. Visual language grounding is a challenging task that includes identifying a primary object among several objects, together with the object properties and spatial relations among the objects. In this paper we focus on extracting this information from sentences only. We propose two language modelling techniques, one uses regular expressions and the other one utilizes Euclidian distance. We compare these two proposed techniques with two other techniques that utilize tree structures, namely an extended Hobb’s algorithm and an algorithm that utilizes a Stanford parse tree. A comparative analysis between all language modelling techniques shows that our proposed two approaches require less computational time than the tree-based approaches. All approaches perform good identifying the primary object and its property, but for spatial relation extraction the Stanford parse tree algorithm performs better than the other language modelling techniques. Time elapsed for the Stanford parse tree algorithm is higher than for the other techniques.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf