Umeå University's logo

umu.sePublications
Change search
Refine search result
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Influences of paratendinous innervation and non-neuronal substance P in tendinopathy: studies on human tendon tissue and an experimental model of Achilles tendinopathy2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Pain of the musculoskeletal system is one of the most common reasons for people seeking medical attention, and is also one of the major factors that prevent patients from working. Chronic tendon pain, tendinopathy, affects millions of workers world-wide, and the Achilles tendon is an important structure often afflicted by this condition. The pathogenesis of tendinopathy is poorly understood, but it is thought to be of multifactoral aetiology. It is known that tendon pain is often accompanied not only by impaired function but also by structural tissue changes, like vascular proliferation, irregular collagen organisation, and hypercellularity, whereby the condition is called tendinosis. In light of the poor knowledge of tendinosis pathophysiology and recent findings of a non-neuronal signalling system in tendon tissue, the contributory role of neuropeptides such as substance P (SP) has gained increased interest. SP, known for afferent pain signalling in the nervous system, also has multiple efferent functions and has been described to be expressed by non-neuronal cells. As pain is the most prominent symptom of tendinopathy, the focus of the studies in this thesis was the innervation patterns of the tissue ventral to the Achilles tendon (i.e. the tissue targeted in many contemporary treatment methods) as well as the distribution of SP and its preferred receptor, the neurokinin-1 receptor (NK-1R), in the tendon tissue itself. It was hereby hypothesised that the source of SP affecting the Achilles tendon might be the main cells of the tendon tissue (the tenocytes) as well as paratendinous nerves, and that SP might be involved in tendinosis- development. The studies were conducted, via morphological staining methods including immunohistochemistry and in situ hybridisation, on tendon biopsies from patients suffering from Achilles tendinosis and on those from healthy volunteers. The hypothesis of the thesis was furthermore tested using an experimental animal model (rabbit) of Achilles tendinopathy, which was first validated. The model was based on a previously established overuse protocol of repetitive exercise. In the human biopsies of the tissue ventral to the Achilles tendon, there was a marked occurrence of sympathetic innervation, but also sensory, SP-containing, nerve fibres. NK-1R was expressed on blood vessels and nerve fascicles of the paratendinous tissue, but also on the tenocytes of the tendon tissue proper itself, and notably more so in patients suffering from tendinosis. Furthermore, the human tenocytes displayed not only NK-1R mRNA but also mRNA for SP. The animal model was shown to produce objectively verified tendinosis-like changes, such as hypercellularity and increased vascularity, in the rabbit Achilles tendons, after a minimum of three weeks of the exercise protocol. The contralateral leg of the animals in the model was found to be an unreliable control, as bilateral changes occured. The model furthermore demonstrated that exogenously administered SP triggers an inflammatory response in the paratendinous tissue and accelerates the intratendinous tendinosis-like changes such that they now occur after only one week of the protocol. Injections of saline as a control showed similar results as SP concerning hypercellularity, but did not lead to vascular changes or pronounced paratendinous inflammation. In summary, this thesis concludes that interactions between the peripheral sympathetic and sensory nervous systems may occur in Achilles tendinosis at the level of the ventral paratendinous tissue, a region thought to be of great importance in chronic tendon pain since many successful treatments are directed toward it. Furthermore, the distribution of NK-1R:s in the Achilles tendon described in these studies gives a basis for SP, whether produced by nerves mainly outside the tendon or by tenocytes within the tendon, to affect blood vessels, nerve structures, and/or tendon cells, especially in tendinosis patients. In light of this and of previously known SP-effects, such as stimulation of angiogenesis, pain signalling, and cell proliferation, the proposed involvement of SP in tendinosis development seems likely. Indeed, the animal model of Achilles tendon overuse confirms that SP does induce vascular proliferation and hypercellularity in tendon tissue, thus strengthening theories of SP playing a role in tendinosis pathology.

    Download full text (pdf)
    FULLTEXT01
  • 2.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Christensen, Jens
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Nerve distributions in insertional Achilles tendinopathy - a comparison of bone, bursae and tendon2017In: Histology and Histopathology, ISSN 0213-3911, E-ISSN 1699-5848, Vol. 32, no 3, p. 263-270Article in journal (Refereed)
    Abstract [en]

    Background/Aim. In a condition of pain in the Achilles tendon insertion there are multiple structures involved, such as the Achilles tendon itself, the retrocalcaneal bursa and a bony protrusion at the calcaneal tuberosity called Haglund's deformity. The innervation patterns of these structures are scarcely described, and the subcutaneous calcaneal bursa is traditionally not considered to be involved in the pathology. This study aimed at describing the innervation patterns of the four structures described above to provide a better understanding of possible origins of pain at the Achilles tendon insertion.

    Methods. Biopsies were taken from 10 patients with insertional Achilles tendinopathy, which had pathological changes in the subcutaneous and retrocalcaneal bursae, a Haglund deformity and Achilles tendon tendinopathy as verified by ultrasound. The biopsies were stained using immunohistochemistry in order to delineate the innervation patterns in the structures involved in insertional Achilles tendinopathy.

    Results. Immunohistochemical examinations found that the subcutaneous bursa scored the highest using a semi-quantitative evaluation of the degree of innervation when compared to the retrocalcaneal bursa, the Achilles tendon, and the calcaneal bone.

    Conclusions. These findings suggest that the subcutaneous bursa, which is traditionally not included in surgical treatment, may be a clinically important factor in insertional Achilles tendinopathy.

  • 3.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Department of Physical Therapy, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada.
    Lorentzon, Ronny
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P accelerates hypercellularity and angiogenesis in tendon tissue and enhances paratendinitis in response to Achilles tendon overuse in a tendinopathy model2011In: British Journal of Sports Medicine, ISSN 0306-3674, E-ISSN 1473-0480, Vol. 45, no 13, p. 1017-1022Article in journal (Refereed)
    Abstract [en]

    Background Tenocytes produce substance P (SP) and its receptor (neurokinin-1 receptor (NK-1R) is expressed throughout the tendon tissue, expecially in patients with tendinopathy and tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering the known effects of SP, one might ask whether SP contributes to these canges.

    Objectives To test whether development of tendinosislike changes (hypercellularity and angiogenesis) is accelerated during a 1-week course of ecercise with local administration of SP in an establish Achilles tendinopathy model.

    Methods Rabbits were subjected to a protocol of Achilles tendon overuse for 1 week, in conjunction with SP injections in the paratenon. Exercised control animals received NaCl injections or no injections, and unexercised, uninjected controls were also used. Tenocyte number and vascular density, as well as paratendinous inflammation, were evaluated. Immunohistochemistry and in sity hybridisation to detect NK-1R were conducted.

    Results There was a significant increase in tenocyte number in the SP-injected and NaCl-injected groups compared with both unexercised and exercised, uninjected controls. Tendon blood vessels increased in number in the SP-injected group compared with unexercised controls, a finding not seen in NaCl-injected controls or in uninjected, exercised animals. Paratendinous inflammation was more pronounced in the SP-injected group than in the NaCl controls. NK-1R was detected in blood vessel walls, nerves, inflammatory cells and tenocytes.

    Conclusions SP accelerated the development of tendinosis-like changes in the rabbit. Achilles tendon, which supports theories of a potential role of SP in tendinosis development; a fact of clinical interest since SP effects can be effectively blocked. The angiogenic response to SP injections seems related to parateninitis.

  • 4.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
    Lorentzon, Ronny
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P induces tendinosis-like changes in a rabbit model of Achilles tendon overuseManuscript (preprint) (Other academic)
    Abstract [en]

    BACKGROUND: In previous studies we found evidence favouring that human Achilles tendon cells (tenocytes) are capable of producing the neuropeptide substance P (SP). Furthermore, the preferred receptor for SP (the neurokinin-1 receptor, NK-1 R) was widely expressed throughout the tendon, especially in patients suffering from chronic tendon pain (tendinopathy) with tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering known effects of SP, one might ask whether SP contributes to tendon cell proliferation and neovascularisation in tendinosis. We have an established animal (rabbit) model of Achilles tendinopathy based on overuse in the form of repetitive exercise. Recent studies with this model have shown that tendinosis-like changes are present after 3 weeks of exercise, but not after only 1 week. The current study aimed to test whether the development of tendinosis-like changes would be accelerated during a 1 week course of exercise with repetitive local administration of SP.

    MATERIAL AND METHODS: Four groups of animals (5-6 New Zealand white rabbits per group) were used. Three groups were subjected to the previously established protocol of Achilles tendon overuse for 1 week. One of these groups was given repetitive SP injections in the paratendinous tissue of the Achilles tendon, whereas one group (‘NaCl controls’) was given an equivalent schedule of saline injections. Two additional control groups existed: One in which the animals were neither subjected to the overuse protocol nor to any injections (‘untrained controls’), and one in which the animals trained for 1 week but were not given any injections (‘1 week controls’). Tenocyte number, vascular density, and the possible occurrence of paratendinous inflammation were evaluated. Immunohistochemistry and in situ hybridisation to detect NK-1 R were also conducted.

    RESULTS: There was a significant increase in tenocyte number in the SP-injected group compared to both untrained controls and 1 week controls. However, the same phenomenon was noticed for NaCl controls, i.e. tenocyte number was significantly increased in response to NaCl injections compared to untrained controls. There was an increase in the number of tendon blood vessels in the SP-injected group as compared to untrained controls, and this increase in vascularity was not seen for the NaCl controls or the 1 week controls. Paratendinous inflammation, as evidenced by invasion of inflammatory cells in the paratenon, was clearly more pronounced in the SP-injected group than in the NaCl controls. NK-1 R was detected in blood vessel walls, on nerves, on inflammatory cells, and on tenocytes.

    DISCUSSION AND CONCLUSIONS: The observations suggest that SP induces tenocyte proliferation and angiogenesis in the rabbit Achilles tendon, thus supporting a potential role of this neuropeptide in the processes that occur in tendinosis. The study corroborates findings on the human Achilles tendon in that NK-1 R was expressed on tenocytes and tendon blood vessel walls, thereby providing a potential anatomic basis for the observed effects of SP on the development of tendinosis. The hypercellularity observed in response to NaCl injections might be due increased tissue pressure or to stimulation of endogenous SPproduction, a phenomenon not unheard of. The angiogenic effect of SP injections, on the other hand, appeared to be more specifically related to an induction of inflammation in the paratendon.

  • 5.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Arteries in the area targeted with successful sclerosing injections for Achilles tendinosis are under distinct neural control2006Conference paper (Refereed)
    Abstract [en]

    It has been scientifically demonstrated that there are blood vessels with pathologically high blood flow inside and outside the ventral part of the Achilles tendon in chronic painful tendinosis, but not in pain-free normal Achilles tendons. Injections of local anaesthesia on the outside of the ventral part of the tendon have been found to temporarily abolish the tendon pain, and this has been an inspiration in the development of a new approach in the treatment of tendinosis: Based on ultrasound- (US) and colour Doppler- (CD) guidance, the sclerosing substance polidocanol, for many years used in treatment of varicose veins, was injected targeting the area of high-flow blood vessels just outside the ventral part of the Achilles tendon. The treatment has in pilot studies and a randomized controlled clinical study been shown to cure the pain in about 70-80 % of the patients. Also, follow up examinations, using US and CD, have shown a possible remodeling potential of the tendon. There is some previous information available on the innervation patterns of the human Achilles tendon itself. However, the innervation patterns of the area just outside the ventral part of the tendon, i.e. the area that is targeted by the sclerosing injections (target area), are unknown. This includes a lack of information concerning the nerve-related characteristics of the blood vessels in the area. In this study, therefore, tissue specimens from this target area, obtained during surgical treatment of patients with chronic painful mid-portion Achilles tendinosis, were examined. Histological and immunohistochemical examinations were performed. In the tissue of the target area, in which loose connective tissue and fat cells were frequent constituents, there was a presence of arteries and nerve fascicles. The arteries were of varying dimensions, some being very large. The nerve fascicles were distinguished in sections processed for the pan-neural marker protein gene-product 9.5 (PGP 9.5).  Some of the arteries were supplied by an extensive perivascular innervation, as seen via PGP 9.5 staining. As seen via processing for the rate limiting enzyme in catecholamine synthesis, tyrosine hydroxylase (TH), sympathetic innervation was found to be a constituent of this innervation. There was furthermore a marked occurrence of immunoreactions for the α1-adrenoreceptor in arterial walls. Also, there was a presence of immunoreactions for the substance P (SP)-preferred receptor, the neurokinin-1 (NK-1) receptor in arterial walls. This receptor was particularly detected in the endothelial parts. The study shows that the arteries in the target area are accompanied by nerve fascicles and that there is a presence of a perivascular innervation, as well as a presence of adrenergic and NK-1 receptors in arterial walls, in this region. Thus, arteries in this area are under distinct neural control. The nerve-related characteristics of the area targeted in the successful polidicanol injection treatment for Achilles tendinosis are here for the first time shown.

  • 6.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis2007In: Knee Surgery, Sports Traumatology, Arthroscopy, ISSN 0942-2056, E-ISSN 1433-7347, Vol. 15, no 10, p. 1272-1279Article in journal (Refereed)
    Abstract [en]

    Ultrasound and Doppler examination has shown high blood flow-neovascularisation inside and outside the ventral Achilles tendon in chronic painful tendinosis, but not in pain-free normal Achilles tendons. In patients with Achilles tendinosis, injections with the sclerosing substance polidocanol, targeting the areas with increased blood flow, have been demonstrated to give pain relief. A drawback when interpreting these findings is the fact that the pattern of nerve supply in the target area, i.e. the ventral area of the tendon, is so far unknown. In this study, therefore, tissue specimens from this area, obtained during surgical treatment of patients with chronic painful midportion Achilles tendinosis, were examined. In the examined area, containing loose connective tissue, the general finding was a presence of large and small arteries and nerve fascicles. The nerve fascicles were distinguished in sections processed for the pan-neural marker protein gene-product 9.5. The nerve fascicles contain sensory nerve fibers, as shown via staining for the sensory markers substance P (SP) and calcitonin gene-related peptide, and sympathetic nerve fibers as seen via processing for tyrosine hydroxylase. In addition, there were immunoreactions for the SP-preferred receptor, the neurokinin-1 receptor, in blood vessel walls and nerve fascicles. Some of the blood vessels were supplied by an extensive peri-vascular innervation, sympathetic nerve fibers being a distinct component of this innervation. There was also a marked occurrence of immunoreactions for the alpha1-adrenoreceptor in arterial walls as well as in the nerve fascicles. Altogether, these findings suggest that the area investigated is under marked influence by the nervous system, including sympathetic and sensory components. Thus, sympathetic/sensory influences may be involved in the pain mechanisms from this area. In conclusion, the nerve-related characteristics of the area targeted by the polidicanol injection treatment for Achilles tendinosis, are shown here for the first time.

  • 7.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon2008In: Regulatory Peptides, ISSN 0167-0115, E-ISSN 1873-1686, Vol. 150, no 1-3, p. 81-87Article in journal (Refereed)
    Abstract [en]

    Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.

  • 8.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    University of British Columbia, Vancouver, Vancouver Coastal Health and Research Institute.
    Gaida, James Edmund
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Stjernfeldt, Johanna Elgestad
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lorentzon, Ronny
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Backman, Clas
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy: contralateral effects suggest the involvement of central neuronal mechanisms2011In: British Journal of Sports Medicine, ISSN 0306-3674, E-ISSN 1473-0480, Vol. 45, no 5, p. 399-406Article in journal (Refereed)
    Abstract [en]

    Objective To determine whether there are objective findings of tendinosis in a rabbit tendinopathy model on exercised and contralateral (non-exercised) Achilles tendons. Design Four groups of six New Zealand white rabbits per group were used. The animals of one (control) group were not subjected to exercise/stimulation. Interventions Animals were subjected to a protocol of electrical stimulation and passive flexion-extension of the right triceps surae muscle every second day for 1, 3 or 6 weeks. Main Outcome Measures Tenocyte number and vascular density were calculated. Morphological evaluations were also performed as well as in-situ hybridisation for vascular endothelial growth factor (VEGF) messenger RNA. Results There was a significant increase in the tenocyte number after 3 and 6 weeks of exercise, but not after 1 week, in comparison with the control group. This was seen in the Achilles tendons of both legs in experimental animals, including the unexercised limb. The pattern of vascularity showed an increase in the number of tendon blood vessels in rabbits that had exercised for 3 weeks or more, compared with those who had exercised for 1 week or not at all. VEGF-mRNA was detected in the investigated tissue, with the reactions being more clearly detected in the tendon tissue with tendinosis-like changes (6-week rabbits) than in the normal tendon tissue (control rabbits). Conclusions There were bilateral tendinosis-like changes in the Achilles tendons of rabbits in the current model after 3 weeks of training, suggesting that central neuronal mechanisms may be involved and that the contralateral side is not appropriate as a control.

  • 9.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Orädd, Greger
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Umeå Centre for Comparative Biology (UCCB).
    Sultan, Fahad
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    In vivo Diffusion Tensor Imaging, Diffusion Kurtosis Imaging, and Tractography of a Sciatic Nerve Injury Model in Rat at 9.4T2018In: Scientific Reports, E-ISSN 2045-2322, Vol. 8, article id 12911Article in journal (Refereed)
    Abstract [en]

    Peripheral nerve injuries result in severe loss of sensory and motor functions in the afflicted limb. There is a lack of standardised models to non-invasively study degeneration, regeneration, and normalisation of neuronal microstructure in peripheral nerves. This study aimed to develop a non-invasive evaluation of peripheral nerve injuries, using diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), and tractography on a rat model of sciatic nerve injury. 10 female Sprague Dawley rats were exposed to sciatic nerve neurotmesis and studied using a 9.4 T magnet, by performing DTI and DKI of the sciatic nerve before and 4 weeks after injury. The distal nerve stump showed a decrease in fractional anisotropy (FA), mean kurtosis (MK), axonal water fraction (AWF), and radial and axonal kurtosis (RK, AK) after injury. The proximal stump showed a significant decrease in axial diffusivity (AD) and increase of MK and AK as compared with the uninjured nerve. Both mean diffusivity (MD) and radial diffusivity (RD) increased in the distal stump after injury. Tractography visualised the sciatic nerve and the site of injury, as well as local variations of the diffusion parameters following injury. In summary, the described method detects changes both proximal and distal to the nerve injury.

    Download full text (pdf)
    fulltext
  • 10.
    Backman, Ludvig
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wennstig, Gabriel
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Endogenous substance P production in the Achilles tendon increases with loading in an in vivo model of tendinopathy: peptidergic elevation preceding tendinosis-like tissue changes2011In: Journal of Musculoskeletal and Neuronal Interactions - JMNI, ISSN 1108-7161, Vol. 11, no 2, p. 133-140Article in journal (Refereed)
    Abstract [en]

    Objectives: To quantify the intratendinous levels of substance P (SP) at different stages of overload in an established modelfor Achilles tendinopathy (rabbit). Also, to study the distribution of the SP-receptor, the NK-1R, and the source of SP, in thetendon. 

    Methods: Animals were subjected to the overuse protocol for 1, 3 or 6 weeks. One additional group served as unexercisedcontrols. Immunoassay (EIA), immunohistochemistry (IHC), and in situ hybridisation (ISH) were performed.

    Results: EIA revealedincreased SP-levels in the Achilles tendon of the exercised limb in all the experimental groups as compared to in thecontrols (statistically significant; p=0.01). A similar trend in the unexercised Achilles tendon was observed but was not statisticallysignificant (p=0.14). IHC and in ISH illustrated reactions of both SP and NK-1R mainly in blood vessel walls, but the receptorwas also found on tenocytes.

    Conclusions: Achilles tendon SP-levels are elevated already after 1 week of loading. This showsthat increased SP-production precedes tendinosis, as tendinosis-like changes occur only after a minimum of 3 weeks of exercise,as shown in a recent study using this model. We propose that central neuronal mechanism may be involved as similar trends wereobserved in the contralateral Achilles tendon.

  • 11.
    Backman, Ludvig
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Fong, Gloria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Vancouver Coastal Health and Research Institute, University of British Columbia, Vancouver.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P is a mechanoresponsive, autocrine regulator of human tenocyte proliferation2011In: PLOS ONE, E-ISSN 1932-6203, Vol. 6, no 11, p. e27209-Article in journal (Refereed)
    Abstract [en]

    It has been hypothesised that substance P (SP) may be produced by primary fibroblastic tendon cells (tenocytes), and that this production, together with the widespread distribution of the neurokinin-1 receptor (NK-1 R) in tendon tissue, could play an important role in the development of tendinopathy, a condition of chronic tendon pain and thickening. The aim of this study was to examine the possibility of endogenous SP production and the expression of NK-1 R by human tenocytes. Because tendinopathy is related to overload, and because the predominant tissue pathology (tendinosis) underlying early tendinopathy is characterized by tenocyte hypercellularity, the production of SP in response to loading/strain and the effects of exogenously administered SP on tenocyte proliferation were also studied. A cell culture model of primary human tendon cells was used. The vast majority of tendon cells were immunopositive for the tenocyte/fibroblast markers tenomodulin and vimentin, and immunocytochemical counterstaining revealed that positive immunoreactions for SP and NK-1 R were seen in a majority of these cells. Gene expression analyses showed that mechanical loading (strain) of tendon cell cultures using the FlexCell (R) technique significantly increased the mRNA levels of SP, whereas the expression of NK-1 R mRNA decreased in loaded as compared to unloaded tendon cells. Reduced NK-1 R protein was also observed, using Western blot, after exogenously administered SP at a concentration of 10(-7) M. SP exposure furthermore resulted in increased cell metabolism, increased cell viability, and increased cell proliferation, all of which were found to be specifically mediated via the NK-1 R; this in turn involving a common mitogenic cell signalling pathway, namely phosphorylation of ERK1/2. This study indicates that SP, produced by tenocytes in response to mechanical loading, may regulate proliferation through an autocrine loop involving the NK-1 R.

    Download full text (pdf)
    fulltext
  • 12.
    Backman, Ludvig J
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Fong, Gloria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Department of Physical Therapy, University of British Columbia and Centre for Hip Health and Mobility, Vancouver Coastal Health and Research Institute, Vancouver, British Columbia, Canada.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Scott, A
    University of British Columbia, Vancouver, Vancouver Coastal Health and Research Institute.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alpha-2 adrenergic stimulation triggers Achilles tenocyte hypercellularity: comparison between two model systems2013In: Scandinavian Journal of Medicine and Science in Sports, ISSN 0905-7188, E-ISSN 1600-0838, Vol. 23, no 6, p. 687-696Article in journal (Refereed)
    Abstract [en]

    The histopathology of tendons with painful tendinopathy is often tendinosis, a fibrosis-like condition of unclear pathogenesis characterized by tissue changes including hypercellularity. The primary tendon cells (tenocytes) have been shown to express adrenoreceptors (mainly alpha-2A) as well as markers of catecholamine production, particularly in tendinosis. It is known that adrenergic stimulation can induce proliferation in other cells. The present study investigated the effects of an exogenously administered alpha-2 adrenergic agonist in an established in vivo Achilles tendinosis model (rabbit) and also in an in vitro human tendon cell culture model. The catecholamine producing enzyme tyrosine hydroxylase and the alpha-2A-adrenoreceptor (α(2A) AR) were expressed by tenocytes, and alpha-2 adrenergic stimulation had a proliferative effect on these cells, in both models. The proliferation was inhibited by administration of an α(2A) AR antagonist, and the in vitro model further showed that the proliferative alpha-2A effect was mediated via a mitogenic cell signaling pathway involving phosphorylation of extracellular-signal-regulated kinases 1 and 2. The results indicate that catecholamines produced by tenocytes in tendinosis might contribute to the proliferative nature of the pathology through stimulation of the α(2A) AR, pointing to a novel target for future therapies. The study furthermore shows that animal models are not necessarily required for all aspects of this research.

    Download full text (pdf)
    fulltext
  • 13.
    Christensen, Jens
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Sports Medicine. UCLH, ISEH, London, England; Pure Sports Clin, London, England.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Protease-activated receptors in the Achilles tendon-a potential explanation for the excessive pain signalling in tendinopathy2015In: Molecular Pain, E-ISSN 1744-8069, Vol. 11, article id 13Article in journal (Refereed)
    Abstract [en]

    Background/Aim: Tendinopathies are pathological conditions of tissue remodelling occurring in the major tendons of the body, accompanied by excessive nociceptive signalling. Tendinopathies have been shown to exhibit an increase in the number of mast cells, which are capable of releasing histamine, tryptase and other substances upon activation, which may play a role in the development of tendinopathies. This study set out to describe the distribution patterns of a family of receptors called protease-activated receptors (PARs) within the Achilles tendon. These four receptors (PAR1, PAR2, PAR3, PAR4) are activated by proteases, including tryptase released from mast cells, and are involved in fibrosis, hyperalgesia and neovascularisation, which are changes seen in tendinopathies. Method: In order to study which structures involved in tendinopathy that these proteases can affect, biopsies from patients suffering of mid-portion Achilles tendinosis and healthy controls were collected and examined using immunohistochemistry. Tendon cells were cultured to study in vitro expression patterns. Results: The findings showed a distribution of PARs inside the tendon tissue proper, and in the paratendinous tissue, with all four being expressed on nerves and vascular structures. Double staining showed co-localisation of PARs with nociceptive fibres expressing substance P. Concerning tenocytes, PAR2, PAR3, and PAR4, were found in both biopsies of tendon tissue and cultured tendon cells. Conclusions: This study describes the expression patterns of PARs in the mid-portion of the Achilles tendon, which can help explain the tissue changes and increased pain signalling seen in tendinopathies. These findings also show that in-vitro studies of the effects of these receptors are plausible and that PARs are a possible therapeutic target in the future treatment strategies of tendinopathy.

    Download full text (pdf)
    fulltext
  • 14.
    Danielson, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Anatomi.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Anatomi.
    Extensive expression of markers for acetylcholine synthesis and of M2 receptors in tenocytes in therapy-resistant chronic painful patellar tendon tendinosis - a pilot study.2007In: Life Sciences, ISSN 0024-3205, E-ISSN 1879-0631, Vol. 80, no 24-25, p. 2235-2238Article in journal (Refereed)
    Abstract [en]

    We have recently obtained evidence favoring the occurrence of an up-regulation of a non-neuronal cholinergic system in chronic painful patellar tendon tendinosis. It seems possible that this up-regulation to a certain degree may be involved in the manifestations of the disease. Today, there is a new, very successful, line of treatment of patellar tendinosis in the form of Doppler guided sclerosing injections. However, a few patients seem resistant to this therapy. Therefore, we have in this pilot study investigated biopsies from the patellar tendon of three such therapy-resistant patients, using immunohistochemistry. In situ hybridization was also applied. Comparisons were made with a material of specimens from both normal (n=16) and tendinosis (n=7) tendons, also previously examined. The study showed that there were extensive immunoreactions for choline acetyltransferase (ChAT) and vesicular acetylcholine transporter, as well as for the M(2) muscarinic acetylcholine receptor, in the overwhelming majority of the tenocytes. The immunoreactions were more pronounced than those generally obtained in the tendinosis tissue of the previously studied patients and clearly more pronounced than those of patellar tendon tissue of controls. Also, for the first time, we here present findings of mRNA for ChAT within tenocytes. In conclusion, it appears as if there is an excessive local acetylcholine (ACh) production and an occurrence of marked ACh effects in cases of severe tendinosis. An excessive production of local ACh might be related to pain sensation and the processes that occur in tendinosis development, such as cell proliferation. Thus, the results of this pilot study suggest that non-neuronal ACh is highly involved in the pathology of therapy-resistant patellar tendinosis.

  • 15.
    Danielson, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Marked sympathetic component in the perivascular innervation of the dorsal paratendinous tissue of the patellar tendon in arthroscopically treated tendinosis patients.2008In: Knee Surgery, Sports Traumatology, Arthroscopy, ISSN 0942-2056, E-ISSN 1433-7347, Vol. 16, no 6, p. 621-6Article in journal (Refereed)
    Abstract [en]

    During the recent years, a few studies have shed new light on the innervation patterns of the human patellar tendon, but the area of the loose paratendinous connective tissue dorsal to the proximal tendon proper has yet not been investigated. That is a drawback, since this is the area targeted in promising treatment regimens of chronic painful patellar tendinosis, namely sclerosing Polidocanol injection therapy, and a new surgical method conforming to ultrasound and color Doppler guided arthroscopic shaving, directed at neovessels found in the region. The present study thus aimed at investigating the paratendinous area dorsal to the proximal patellar tendon proper in seven patients being operated for tendinosis. Biopsies were collected through the new arthroscopic technique, approaching the tendon from the dorsal side. Samples were investigated using immunohistochemistry with antibodies delineating general (PGP 9.5), sensory (SP/CGRP), and sympathetic (TH/NPY) nerve patterns, and also antibodies against alpha1- and alpha2A-adrenoreceptors. Both small and large blood vessels had a marked perivascular innervation (PGP 9.5). Surprisingly, this perivascular innervation was found only to a very limited extent to correspond to sensory nerves, while there were marked immunoreactions for sympathetic markers. Adrenoreceptor immunoreactions frequently occurred in blood vessel walls. In conclusion, this study demonstrates, for the first time, the innervation patterns of the area dorsal to the patellar tendon in man. It shows that the area investigated is under marked influence by the sympathetic nervous system. Thus, sympathetic effects are likely to occur for blood vessels of the area, which is interesting since color Doppler has revealed that vessels of this area ("neovessels") display a pathologically high blood flow in tendinosis. The findings are discussed in relation to aspects of vascular regulation, and to pain symptoms of tendinosis.

  • 16.
    Danielson, Patrik
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Andersson, Gustav
    Alfredson, Håkan
    Forsgren, Sture
    Marked sympathetic component in the perivascular innervation of the dorsal paratendinous tissue targeted in sclerosing Polidocanol injection therapy of patellar tendinosisManuscript (Other academic)
  • 17.
    El-Habta, Roine
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Anti-apoptotic effect of adipose tissue-derived stromal vascular fraction in denervated rat muscle2021In: Stem Cell Research & Therapy, E-ISSN 1757-6512, Vol. 12, no 162Article in journal (Refereed)
  • 18.
    Fong, Gloria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Vancouver Coastal Health and Research Institute.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway2013In: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 351, no 3, p. 465-475Article in journal (Refereed)
    Abstract [en]

    Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.

  • 19.
    Forsgren, Sture
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Sports medicine.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Further proof of the existence of a non-neuronal cholinergic system in the human Achilles tendon: Presence of the AChR alpha 7 receptor in tendon cells and cells in the peritendinous tissue2015In: International Immunopharmacology, ISSN 1567-5769, E-ISSN 1878-1705, Vol. 29, no 1, p. 195-200Article in journal (Refereed)
    Abstract [en]

    Human tendon cells have the capacity for acetylcholine (ACh) production. It is not known if the tendon cells also have the potential for ACh breakdown, nor if they show expression of the nicotinic acetylcholine receptor AChR alpha 7 (alpha 7nAChR). Therefore, tendon tissue specimens from patients with midportion Achilles tendinopathy/tendinosis and from normal midportion Achilles tendons were examined. Reaction for the degradative enzyme acetylcholinesterase (AChE) was found in some tenocytes in only a few tendinopathy tendons, and was never found in those of control tendons. Tenocytes displayed more regularly alpha 7nAChR immunoreactivity. However, there was a marked heterogeneity in the degree of this reaction within and between the specimens. alpha 7nAChR immunoreactivity was especially pronounced for tenocytes showing an oval/widened appearance. There was a tendency that the magnitude of alpha 7nAChR immunoreactivity was higher in tendinopathy tendons as compared to control tendons. A stronger alpha 7nAChR immunoreactivity than seen for tenocytes was observed for the cells in the peritendinous tissue. It is likely that the alpha 7nAChR may be an important part of an auto-and paracrine loop of non-neuronal ACh that is released from the tendon cells. The effects may be related to proliferative and blood vessel regulatory functions as well as features related to collagen deposition. ACh can furthermore be of importance in leading to anti-inflammatory effects in the peritendinous tissue, a tissue nowadays considered to be of great relevance for the tendinopathy process. Overall, the findings show that tendon tissue, a tissue known to be devoid of cholinergic innervation, is a tissue in which there is a marked non-neuronal cholinergic system.

  • 20. Huisman, Elise S.
    et al.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Reno, Carol R.
    Hart, David A.
    Thornton, Gail M.
    Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading2014In: Journal of Anatomy, ISSN 0021-8782, E-ISSN 1469-7580, Vol. 224, no 5, p. 538-547Article in journal (Refereed)
    Abstract [en]

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon.

  • 21.
    Kumar Kuna, Vijay
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lundgren, André
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Anerillas, Luis Oliveros
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Odontology.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Novikova, Ludmila N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Efficacy of Nerve-Derived Hydrogels to Promote Axon Regeneration Is Influenced by the Method of Tissue Decellularization2022In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 23, no 15, article id 8746Article in journal (Refereed)
    Abstract [en]

    Injuries to large peripheral nerves are often associated with tissue defects and require reconstruction using autologous nerve grafts, which have limited availability and result in donor site morbidity. Peripheral nerve-derived hydrogels could potentially supplement or even replace these grafts. In this study, three decellularization protocols based on the ionic detergents sodium dodecyl sulfate (P1) and sodium deoxycholate (P2), or the organic solvent tri-n-butyl phosphate (P3), were used to prepare hydrogels. All protocols resulted in significantly decreased amounts of genomic DNA, but the P2 hydrogel showed the best preservation of extracellular matrix proteins, cytokines, and chemokines, and reduced levels of sulfated glycosaminoglycans. In vitro P1 and P2 hydrogels supported Schwann cell viability, secretion of VEGF, and neurite outgrowth. Surgical repair of a 10 mm-long rat sciatic nerve gap was performed by implantation of tubular polycaprolactone conduits filled with hydrogels followed by analyses using diffusion tensor imaging and immunostaining for neuronal and glial markers. The results demonstrated that the P2 hydrogel considerably increased the number of axons and the distance of regeneration into the distal nerve stump. In summary, the method used to decellularize nerve tissue affects the efficacy of the resulting hydrogels to support regeneration after nerve injury.

    Download full text (pdf)
    fulltext
  • 22.
    Spang, Christoph
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Sports medicine. Pure Sports Med Clin, Cabot Pl West, London E14 4QS, England and Univ Coll London Hosp, Inst Sports Exercise & Hlth, 170 Tottenham Court Rd, London W1T 7HA, England.
    Docking, S. I.
    Masci, L.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    The plantaris tendon: a narrative review focusing on anatomical features and clinical importance2016In: The Bone & Joint Journal, ISSN 2049-4394, E-ISSN 2049-4408, Vol. 98B, no 10, p. 1312-1319Article, review/survey (Refereed)
    Abstract [en]

    In recent years, the plantaris tendon has been implicated in the development of chronic painful mid-portion Achilles tendinopathy. In some cases, a thickened plantaris tendon is closely associated with the Achilles tendon, and surgical excision of the plantaris tendon has been reported to be curative in patients who have not derived benefit following conservative treatment and surgical interventions. The aim of this review is to outline the basic aspects of, and the recent research findings, related to the plantaris tendon, covering anatomical and clinical studies including those dealing with histology, imaging and treatment.

  • 23. Wade, Ryckie G.
    et al.
    Tanner, Steven F.
    Teh, Irvin
    Ridgway, John P.
    Shelley, David
    Chaka, Brian
    Rankine, James J.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM).
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Bourke, Grainne
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, Leeds, United Kingdom; Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom.
    Diffusion Tensor Imaging for Diagnosing Root Avulsions in Traumatic Adult Brachial Plexus Injuries: A Proof-of-Concept Study2020In: Frontiers in Surgery, E-ISSN 2296-875X, Vol. 7, article id 19Article in journal (Refereed)
    Abstract [en]

    Cross-sectional MRI has modest diagnostic accuracy for diagnosing traumatic brachial plexus root avulsions. Consequently, patients either undergo major exploratory surgery or months of surveillance to determine if and what nerve reconstruction is needed. This study aimed to develop a diffusion tensor imaging (DTI) protocol at 3 Tesla to visualize normal roots and identify traumatic root avulsions of the brachial plexus. Seven healthy adults and 12 adults with known (operatively explored) unilateral traumatic brachial plexus root avulsions were scanned. DTI was acquired using a single-shot echo-planar imaging sequence at 3 Tesla. The brachial plexus was visualized by deterministic tractography. Fractional anisotropy (FA) and mean diffusivity (MD) were calculated for injured and avulsed roots in the lateral recesses of the vertebral foramen. Compared to healthy nerves roots, the FA of avulsed nerve roots was lower (mean difference 0.1 [95% CI 0.07, 0.13]; p < 0.001) and the MD was greater (mean difference 0.32 × 10−3 mm2/s [95% CI 0.11, 0.53]; p < 0.001). Deterministic tractography reconstructed both normal roots and root avulsions of the brachial plexus; the negative-predictive value for at least one root avulsion was 100% (95% CI 78, 100). Therefore, DTI might help visualize both normal and injured roots of the brachial plexus aided by tractography. The precision of this technique and how it relates to neural microstructure will be further investigated in a prospective diagnostic accuracy study of patients with acute brachial plexus injuries.

    Download full text (pdf)
    fulltext
  • 24.
    Wade, Ryckie G.
    et al.
    Academic Plastic Surgery Office, Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, United Kingdom; Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom.
    Teh, Irvin
    Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, United Kingdom.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Yeh, Fang-Cheng
    Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, United States.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Bourke, Gráinne
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Academic Plastic Surgery Office, Department of Plastic and Reconstructive Surgery, Leeds General Infirmary, Leeds Teaching Hospitals Trust, Leeds, United Kingdom; Faculty of Medicine and Health Sciences, University of Leeds, Leeds, United Kingdom.
    Fractional anisotropy thresholding for deterministic tractography of the roots of the brachial plexus2021In: Scientific Reports, E-ISSN 2045-2322, Vol. 11, no 1, article id 80Article in journal (Refereed)
    Abstract [en]

    Diffusion tensor imaging (DTI) metrics, such as the fractional anisotropy (FA) and estimates of diffusivity are sensitive to the microstructure of peripheral nerves and may be displayed as tractograms. However, the ideal conditions for tractography of the roots of the brachial plexus are unclear, which represents the rationale for this study. Ten healthy adults were scanned using a Siemens Prisma (3T) and single-shot echo-planar imaging (b-value 0/1000 s/mm2, 64 directions, 2.5 mm3 with 4 averages; repeated in opposing phase encoding directions). Susceptibility correction and tractography were performed in DSI Studio by two independent raters. The effect of FA thresholding at increments of 0.01 (from 0.04 to 0.10) were tested. The mean FA varied between subjects by 2% (95% CI 1%, 3%). FA thresholds of 0.04, 0.05 and 0.06 all propagated 96% of tracts representing the roots; thresholding at 0.07 yielded 4% fewer tracts (p = 0.2), 0.08 yielded 11% fewer tracts (p = 0.008), 0.09 yielded 15% fewer tracts (p = 0.001) and 0.1 yielded 20% fewer tracts (p < 0.001). There was < 0.1% inter-rater variability in the measured FA and 99% agreement for tractography (κ = 0.92, p < 0.001). The fractional anisotropy thresholds required to generate tractograms of the roots of the brachial plexus appears to be lower than those used in the brain. We provide estimates of the probability of generating true tracts for each spinal nerve root of the brachial plexus, at different fractional anisotropy thresholds.

    Download full text (pdf)
    fulltext
  • 25. Wade, Ryckie G.
    et al.
    Whittam, Alexander
    Teh, Irvin
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Wallenberg Centre for Molecular Medicine at Umeå University (WCMM). Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Yeh, Fang-Cheng
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bourke, Grainne
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Department of Plastic and Reconstructive Surgery, Leeds Teaching Hospitals Trust, UK; Leeds Institute for Medical Research, University of Leeds, Leeds, UK.
    Diffusion tensor imaging of the roots of the brachial plexus: a systematic review and meta-analysis of normative values2020In: Clinical and Transational Imaging, ISSN 2281-5872, Vol. 8, p. 419-431Article in journal (Refereed)
    Abstract [en]

    Purpose: Diffusion tensor magnetic resonance imaging (DTI) characterises tissue microstructure and provides proxy measures of myelination, axon diameter, fibre density and organisation. This may be valuable in the assessment of the roots of the brachial plexus in health and disease. Therefore, there is a need to define the normal DTI values.

    Methods: The literature was systematically searched for studies of asymptomatic adults who underwent DTI of the brachial plexus. Participant characteristics, scanning protocols, and measurements of the fractional anisotropy (FA) and mean diffusivity (MD) of each spinal root were extracted by two independent review authors. Generalised linear modelling was used to estimate the effect of experimental conditions on the FA and MD. Meta-analysis of root-level estimates was performed using Cohen’s method with random effects.

    Results: Nine articles, describing 316 adults (1:1 male:female) of mean age 35 years (SD 6) were included. Increments of ten diffusion sensitising gradient directions reduced the mean FA by 0.01 (95% CI 0.01, 0.03). Each year of life reduced the mean MD by 0.03 × 10–3 mm2/s (95% CI 0.01, 0.04). At 3-T, the pooled mean FA of the roots was 0.36 (95% CI 0.34, 0.38; I2 98%). The pooled mean MD of the roots was 1.51 × 10–3 mm2/s (95% CI 1.45, 1.56; I2 99%).

    Conclusions: The FA and MD of the roots of the brachial plexus vary according to experimental conditions and participant factors. We provide summary estimates of the normative values in different conditions which may be valuable to researchers and clinicians alike.

    Download full text (pdf)
    fulltext
  • 26. Ward, Ella Rose
    et al.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Gaida, Jamie E.
    Fat pads adjacent to tendinopathy: more than a coincidence?2016In: British Journal of Sports Medicine, ISSN 0306-3674, E-ISSN 1473-0480, Vol. 50, no 24, p. 1491-1492Article in journal (Refereed)
1 - 26 of 26
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf