umu.sePublications
Change search
Refine search result
1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Björquist, P
    et al.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Biomedical Laboratory Science.
    Ehnebom, J
    Ericsson, M
    Kristiansen, C
    Pohl, G
    Deinum, J
    Plasminogen activator inhibitor type-1 interacts exclusively with the proteinase domain of tissue plasminogen activator.1994In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1209, no 2, 191-202 p.Article in journal (Refereed)
    Abstract [en]

    Two different techniques have been used to study the complex formation of recombinant human plasminogen activator inhibitor type-1, PAI-1, with either recombinant human two-chain tissue plasminogen activator, tc tPA (EC 3.4.21.68), or the tPA deletion variants tc K2P, containing the kringle 2 domain and the proteinase domain, and P, containing only the proteinase domain. The same value for Kon, 2.10(7) M-1s-1 for binding of PAI-1 was found for the three tPA forms by direct detection of the complex formation in real time by surface plasmon resonance, BIAcore, or indirectly by monitoring the time course of the inhibition of tPA using the chromogenic substrate N-methylsulfonyl-D-Phe-Gly-Arg-4-pNA-acetate. Apparently, no conformational change is involved in the rate-limiting step, since the kon value was found to be independent of the temperature from 20 to 35 degrees C. By the BIAcore technique, it was found that the complex between PAI-1 and tPA covalently coupled to the surface, was stable at 25 degrees C, since no dissociation was seen in buffer. However, extended treatment with 1 M NH4OH destroyed the complex with t 1/2 = 5 h. The same kon values and complex composition were found by measuring either the binding of tPA to PAI-1 captured on the monoclonal antibody MAI-11 or the binding of PAI-1 to tPA captured on the monoclonal antibody 2:2 B10. Quantification of the complex composition between PAI-1 captured on the monoclonal antibody MAI-11 with either tPA, K2P or P gave a one-to-one ratio with the fraction of active PAI-1, consistent with the results from SDS-PAGE and the specific activity of PAI-1. The complexes of the three tPA forms with PAI-1 captured on a large surface of MAI-11 dissociated more rapidly from MAI-11, with the same apparent koff, kdis, = 2.10(-3) s-1, compared with 0.7-10(-3) s-1 for the dissociation of PAI-1 alone. In consistance, the Kd, calculated from the direct determination of the kon and koff for the association of different form of PAI-1 to a small surface of MAI-11, was found to be higher for PAI-1 in complex with tPA than for free active PAI-1. Apparently, upon complex formation, a change is induced in PAI-1 at the binding epitope for MAI-11.(ABSTRACT TRUNCATED AT 400 WORDS)

  • 2.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Mesenchymal stem cells for repair of the peripheral and central nervous system2011Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Bone marrow-derived mesenchymal stem cells (MSC) have been shown to provide neuroprotection after transplantation into the injured nervous system. The present thesis investigates whether adult human and rat MSC differentiated along a Schwann cell lineage could increase their expression of neurotrophic factors and promote regeneration after transplantation into the injured peripheral nerve and spinal cord.

    Human and rat mesenchymal stem cells (hMSC and rMSC) expressed characteristic stem cell surface markers, mRNA transcripts for different neurotrophic factors and demonstrated multi-lineage differentiation potential. Following treatment with a cocktail of growth factors, the hMSC and rMSC expressed typical Schwann cells markers at both the transcriptional and translational level and significantly increased production of brain-derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF).

    Age and time in culture are of relevance for clinical settings and growth-promoting effects of hMSC from young donors (16-18 years) and old donors (67-75 years) were compared. Undifferentiated hMSC from both young and old donors increased total neurite length of cultured dorsal root ganglion (DRG) neurons. Differentiation of hMSC from the young donors, but not the eldery donors, further enhanced the neurite outgrowth. Undifferentiated hMSC were cultured for eleven weeks in order to examine the effect of in vitro expansion time on neurite outgrowth. hMSC from the young donors maintained their proliferation rate and their ability to enhance neurite outgrowth from DRG neurons.

    Using a sciatic nerve injury model, a 10mm gap was bridged with either an empty tubular fibrin glue conduit, or conduits containing hMSC, with and without cyclosporine treatment. Cells were labeled with PKH26 prior to transplantation. At 3 weeks after injury the conduits with cells and immunosuppression increased regeneration compared with an empty conduit. PKH26 labeled human cells survived in the rat model and the inflammatory reaction could be suppressed by cyclosporine.

    After cervical C4 hemisection, BrdU/GFP-labeled rMSC were injected into the lateral funiculus rostral and caudal to the spinal cord lesion site. Spinal cords were analyzed 2-8 weeks after transplantation. Transplanted MSC remained at the injection sites and in the trauma zone for several weeks and were often associated with numerous neurofilament-positive axons. Transplanted rMSC induced up-regulation of vascular endothelial growth factor in spinal cord tissue rostral to the injury site, but did not affect expression of brain-derived neurotrophic factor. Although rMSC provided neuroprotection for rubrospinal neurons and significantly attenuated astroglial and microglial reaction, cell transplantation caused aberrant sprouting of calcitonin gene-related peptide immunostained sensory axons in the dorsal horn.

    In summary these results demonstrate that both rat and human MSC can be differentiated towards the glial cell lineage, and show functional characteristics similar to Schwann cells. hMSC from the young donors represent a more favorable source for neurotransplantation since they maintain proliferation rate and preserve their growth-promoting effects in long-term cultures. The data also suggest that differentiated MSC increase expression of neurotrophic factors and support regeneration after peripheral nerve and spinal cord injury.

  • 3.
    Brohlin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Biomedical Laboratory Science.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Effects of a defined xeno-free medium on the growth and neurotrophic and angiogenic properties of human adult stem cells2017In: Cytotherapy, ISSN 1465-3249, E-ISSN 1477-2566, Vol. 19, no 5, 629-639 p.Article in journal (Refereed)
    Abstract [en]

    Background. The growth properties and neurotrophic and angiogenic effects of human mesenchymal stromal cells (MSCs) cultured in a defined xeno-free, serum-free medium (MesenCult-XF) were investigated. Methods. Human MSCs from adipose tissue (ASCs) and bone marrow (BMSCs) were cultured in Minimum Essential Medium-alpha (alpha-MEM) containing fetal calf serum or in MesenCult-XF. Proliferation was measured over 10 passages and the colony-forming unit (CFU) assay and expression of cluster of differentiation (CD) surface markers were determined. Neurite outgrowth and angiogenic activity of the MSCs were determined. Results. At early passage, both ASCs and BMSCs showed better proliferation in MesenCult-XF compared with standard a-MEM containing serum. However, CFUs were significantly lower in MesenCult-XF. ASCs cultured in MesenCult-XF continued to expand at faster rates than cells grown in serum. BMSCs showed morphological changes at late passage in MesenCult-XF and stained positive for senescence beta-galactosidase activity. Expression levels of CD73 and CD90 were similar in both cell types under the various culture conditions but CD105 was significantly reduced at passage 10 in MesenCult-XF. In vitro stimulation of the cells enhanced the expression of brain derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF-A) and angiopoietin-1. Stimulated ASCs grown in MesenCult-XF evoked the longest neurite outgrowth in a neuron co-culture model. Stimulated BMSCs grown in MesenCult-XF produced the most extensive network of capillary-like tube structures in an in vitro angiogenesis assay. Conclusions. ASCs and BMSCs exhibit high levels of neurotrophic and angiogenic activity when grown in the defined serum free medium indicating their suitability for treatment of various neurological conditions. However, long-term expansion in MesenCult-XF might be restricted to ASCs.

  • 4.
    Brohlin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikova, Liudmila
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Aging effect on neurotrophic activity of human mesenchymal stem cells2012In: PLoS ONE, ISSN 1932-6203, Vol. 7, no 9, e45052- p.Article in journal (Refereed)
    Abstract [en]

    Clinical efficacy of stem cells for nerve repair is likely to be influenced by issues including donor age and in vitro expansion time. We isolated human mesenchymal stem cells (MSC) from bone marrow of young (16–18 years) and old (67–75 years) donors and analyzed their capacity to differentiate and promote neurite outgrowth from dorsal root ganglia (DRG) neurons. Treatment of MSC with growth factors (forskolin, basic fibroblast growth factor, platelet derived growth factor-AA and glial growth factor-2) induced protein expression of the glial cell marker S100 in cultures from young but not old donors. MSC expressed various neurotrophic factor mRNA transcripts. Growth factor treatment enhanced the levels of BDNF and VEGF transcripts with corresponding increases in protein release in both donor cell groups. MSC in co-culture with DRG neurons significantly enhanced total neurite length which, in the case of young but not old donors, was further potentiated by treatment of the MSC with the growth factors. Stem cells from young donors maintained their proliferation rate over a time course of 9 weeks whereas those from the old donors showed increased population doubling times. MSC from young donors, differentiated with growth factors after long-term culture, maintained their ability to enhance neurite outgrowth of DRG. Therefore, MSC isolated from young donors are likely to be a favourable cell source for nerve repair.

  • 5.
    Brohlin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Mahay, Daljeet
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Terenghi, Giorgio
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Shawcross, Susan G
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Characterisation of human mesenchymal stem cells following differentiation into Schwann cell-like cells2009In: Neuroscience research, ISSN 0168-0102, E-ISSN 1872-8111, Vol. 64, no 1, 41-49 p.Article in journal (Refereed)
    Abstract [en]

    Cell-based therapies provide a clinically applicable and available alternative to nerve autografts. Our previous studies have characterised rat-derived mesenchymal stem cells (MSC) and here we have investigated the phenotypic, molecular and functional characteristics of human-derived MSC (hMSC) differentiated along a Schwann cell lineage. The hMSC were isolated from healthy human donors and the identity of the undifferentiated hMSC was confirmed by the detection of MSC specific cells surface markers. The hMSC were differentiated along a glial cell lineage using an established cocktail of growth factors including glial growth factor-2. Following differentiation, the hMSC expressed the key Schwann cell (SC) markers at both the transcriptional and translational level. More importantly, we show the functional effect of hMSC on neurite outgrowth using an in vitro co-culture model system with rat-derived primary sensory neurons. The number of DRG sprouting neurites was significantly enhanced in the presence of differentiated hMSC; neurite length and density (branching) were also increased. These results provide evidence that hMSC can undergo molecular, morphological and functional changes to adopt a SC-like behaviour and, therefore, could be suitable as SC substitutes for nerve repair in clinical applications.

  • 6. Cheng, X F
    et al.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Biomedical Laboratory Science.
    Pohl, G
    Bäck, O
    Wallén, P
    Binding of tissue plasminogen activator to endothelial cells. The effect on functional properties. Localization of a ligand in the B-chain of tPA.1995In: Thrombosis Research, ISSN 0049-3848, E-ISSN 1879-2472, Vol. 77, no 2, 149-64 p.Article in journal (Refereed)
    Abstract [en]

    The binding of 125I-labelled tissue plasminogen activator (tPA), the tPA A- or B-chain to endothelial cells (EC) were studied in suspensions of cultured human umbilical vein EC (HUVEC) or immortalized microvascular EC (HMEC). By determinations of the concentration-dependent binding it was shown that both the A-chain and the B-chain, which were isolated after partial reduction of two-chain tPA, contain ligands for binding to EC. The affinity for the B-chain was much higher than for the A-chain according to Scatchard analysis (Kd 24 and 515 nM, respectively), whereas the number of binding sites was higher for the A-chain than for the B-chain (Bmax 8 x 10(5) and 1.2 x 10(5), respectively). There were no cross interactions between the A- and B-chains and their binding sites. The binding of tPA to EC induced an almost 100-fold increase of the activation rate when compared to the same amount of enzyme in free solution, which in contrast to the fibrin-induced stimulation was not inhibited by antibodies against fibrin. The enzymatic activity of the B-chain was much less affected by the association to the cells. Both tPA and the tPA B-chain were largely protected against inhibition by an excess plasminogen activator type-1 (PAI-1) when bound to EC, whereas the same amount of free tPA was totally inactivated. The competition studies strongly indicated that an N-terminal segment in the B-chain, AKHRRSPGER, may be the ligand part of the B-chain. It is interesting to note that this polypeptide segment also participates in a binding site for PAI-1, necessary for effective inhibition. This implies a possible competition between PAI-1 and a tPA-receptor for binding of tPA. High molecular weight urokinase had no quenching effect on the binding of the B-chain to EC.

  • 7.
    McGrath, Aleksandra
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Paul, Kingham
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Fibrin conduit supplemented with human mesenchymal stem cells supports regeneration after peripheral nerve injury   Manuscript (preprint) (Other academic)
    Abstract [en]

    To address the need for the development of bioengineered replacement of a nerve graft for treatment of peripheral nerve injuries a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (hMSC) and immunosupressive treatment with cyclosporine. MSC possess the advantage of lower donor site morbidity and easier expandability in vitro compared with Schwann cells. The effects of hMSC on axonal regeneration in the conduit and reaction of activated macrophages was investigated using sciatic nerve injury model. The experiments were performed on 20 female Fischer rats (8-10 weeks old). A 10mm gap in the sciatic nerve was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with hMSC at concentration of 80x106 cells per ml. Cells were labeled with PKH26 prior to transplantation. The animals were allowed to survive for 3 weeks and some groups were treated with daily injections of cyclosporine. After 3 weeks the conduits were harvested and the distance of regeneration and area occupied by regenerating axons together with ED1 staining of activated macrophages was measured. hMSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine treatment. Moreover, cyclosporine significantly reduced the ED1 macrophage reaction.

  • 8.
    McGrath, Aleksandra M
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Fibrin conduit supplemented with human mesenchymal stem cells and immunosuppressive treatment enhances regeneration after peripheral nerve injury2012In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 516, no 2, 171-176 p.Article in journal (Refereed)
    Abstract [en]

    To address the need for the development of bioengineered replacement of a nerve graft, a novel two component fibrin glue conduit was combined with human mesenchymal stem cells (MSC) and immunosupressive treatment with cyclosporine A. The effects of MSC on axonal regeneration in the conduit and reaction of activated macrophages were investigated using sciatic nerve injury model. A 10mm gap in the sciatic nerve of a rat was created and repaired either with fibrin glue conduit containing diluted fibrin matrix or fibrin glue conduit containing fibrin matrix with MSC at concentration of 80×10(6)cells/ml. Cells were labeled with PKH26 prior to transplantation. The animals received daily injections of cyclosporine A. After 3 weeks the distance of regeneration and area occupied by regenerating axons and ED1 positives macrophages was measured. MSC survived in the conduit and enhanced axonal regeneration only when transplantation was combined with cyclosporine A treatment. Moreover, addition of cyclosporine A to the conduits with transplanted MSC significantly reduced the ED1 macrophage reaction.

  • 9.
    McGrath, Aleksandra M.
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Wiberg, Rebecca
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Long-term effects of fibrin conduit with human mesenchymal stem cells and immunosuppression after peripheral nerve repair in a xenogenic modelManuscript (preprint) (Other academic)
  • 10.
    Novikova, Liudmila N
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Neuroprotective and growth-promoting effects of bone marrow stromal cells after cervical spinal cord injury in adult rats2011In: Cytotherapy, ISSN 1465-3249, Vol. 13, no 7, 873-887 p.Article in journal (Refereed)
    Abstract [en]

    Background aims. Bone marrow stromal cells (BMSC) have been shown to provide neuroprotection after transplantation into the injured central nervous system. The present study investigated whether adult rat BMSC differentiated along a Schwann cell lineage could increase production of trophic factors and support neuronal survival and axonal regeneration after transplantation into the injured spinal cord.

    Methods. After cervical C4 hemi-section, 5-bromo-2-deoxyuridine (BrdU)/green fluorescent protein (GFP)-labeled BMSC were injected into the lateral funiculus at 1 mm rostral and caudal to the lesion site. Spinal cords were analyzed 2-13 weeks after transplantation.

    Results and Conclusions. Treatment of native BMSC with Schwann cell-differentiating factors significantly increased production of brain-derived neurotrophic factor in vitro. Transplanted undifferentiated and differentiated BMSC remained at the injection sites, and in the trauma zone were often associated with neurofilament-positive fibers and increased levels of vascular endothelial growth factor. BMSC promoted extensive in-growth of serotonin-positive raphaespinal axons and calcitonin gene-related peptide (CGRP)-positive dorsal root sensory axons into the trauma zone, and significantly attenuated astroglial and microglial cell reactions, but induced aberrant sprouting of CGRP-immunoreactive axons in Rexed's lamina III. Differentiated BMSC provided neuroprotection for axotomized rubrospinal neurons and increased the density of rubrospinal axons in the dorsolateral funiculus rostral to the injury site. The present results suggest that BMSC induced along the Schwann cell lineage increase expression of trophic factors and have neuroprotective and growth-promoting effects after spinal cord injury.

  • 11.
    Novikova, Liudmila N
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pettersson, Jonas
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Brohlin, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Biodegradable poly-beta-hydroxybutyrate scaffold seeded with Schwann cells to promote spinal cord repair2008In: Biomaterials, ISSN 0142-9612, E-ISSN 1878-5905, Vol. 29, no 9, 1198-1206 p.Article in journal (Refereed)
    Abstract [en]

    Cavity formation is an important obstacle impeding regeneration after spinal cord injury and bridging strategies are essential to provide physical substrate allowing axons to grow across the lesion site. In this study we evaluated effects of biodegradable tubular conduit made from poly-beta-hydroxybutyrate (PHB) scaffold with predominantly unidirectional fiber orientation and supplemented with cultured adult Schwann cells on axonal regeneration after cervical spinal cord injury in adult rats. After transplantation into the injured spinal cord, plain PHB conduit was well-integrated into posttraumatic cavity and induced modest astroglial reaction. Regenerating axons were found mainly outside the PHB with only single fibers crossing the host-graft interface. No host Schwann cells migrated into the graft. In contrast, when suspension of adult Schwann cells was added to the PHB during transplantation, neurofilament-positive axons filled the conduit and became associated with the implanted cells. Although rubrospinal fibers did not enter the PHB, numerous raphaespinal and CGRP-positive axons were found within the conduit. Modification of PHB surface with fibronectin, laminin or collagen significantly increased Schwann cell attachment and proliferation in vitro. However, transplantation of PHB conduit pre-coated with fibronectin and seeded with Schwann cells did not alter axonal growth response. The results demonstrate that a PHB scaffold promotes attachment, proliferation and survival of adult Schwann cells and supports marked axonal regeneration within the graft.

1 - 11 of 11
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf