umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Schelin, Lina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Sjöstedt-de Luna, Sara
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Kriging prediction intervals based on semiparametric bootstrap2010In: Mathematical Geosciences, ISSN 1874-8961, E-ISSN 1874-8953, Vol. 42, no 8, p. 985-1000Article in journal (Refereed)
    Abstract [en]

    Kriging is a widely used method for prediction, which, given observations of a (spatial) process, yields the best linear unbiased predictor of the process at a new location. The construction of corresponding prediction intervals typically relies on Gaussian assumptions. Here we show that the distribution of kriging predictors for non-Gaussian processes may be far from Gaussian, even asymptotically. This emphasizes the need for other ways to construct prediction intervals. We propose a semiparametric bootstrap method with focus on the ordinary kriging predictor. No distributional assumptions about the data generating process are needed. A simulation study for Gaussian as well as lognormal processes shows that the semiparametric bootstrap method works well. For the lognormal process we see significant improvement in coverage probability compared to traditional methods relying on Gaussian assumptions.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf