umu.sePublikasjoner
Endre søk
Begrens søket
1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Schelin, Lina
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Sjöstedt-de Luna, Sara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Kriging prediction intervals based on semiparametric bootstrap2010Inngår i: Mathematical Geosciences, ISSN 1874-8961, E-ISSN 1874-8953, Vol. 42, nr 8, s. 985-1000Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Kriging is a widely used method for prediction, which, given observations of a (spatial) process, yields the best linear unbiased predictor of the process at a new location. The construction of corresponding prediction intervals typically relies on Gaussian assumptions. Here we show that the distribution of kriging predictors for non-Gaussian processes may be far from Gaussian, even asymptotically. This emphasizes the need for other ways to construct prediction intervals. We propose a semiparametric bootstrap method with focus on the ordinary kriging predictor. No distributional assumptions about the data generating process are needed. A simulation study for Gaussian as well as lognormal processes shows that the semiparametric bootstrap method works well. For the lognormal process we see significant improvement in coverage probability compared to traditional methods relying on Gaussian assumptions.

1 - 1 of 1
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf