umu.sePublikasjoner
Endre søk
Begrens søket
1234567 1 - 50 of 1058
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abbara, Aula
    et al.
    Al-Harbat, Nizar
    Karah, Nabil
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Abo-Yahya, Bashar
    El-Amin, Wael
    Hatcher, James
    Gabbar, Omar
    Antimicrobial Drug Resistance among Refugees from Syria, Jordan2017Inngår i: Emerging Infectious Diseases, ISSN 1080-6040, E-ISSN 1080-6059, Vol. 23, nr 5, s. 885-886Artikkel i tidsskrift (Fagfellevurdert)
  • 2. Abbara, Aula
    et al.
    Rawson, Timothy M.
    Karah, Nabil
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    El-Amin, Wael
    Hatcher, James
    Tajaldin, Bachir
    Dar, Osman
    Dewachi, Omar
    Abu Sitta, Ghassan
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Sparrow, Annie
    A summary and appraisal of existing evidence of antimicrobial resistance in the Syrian conflict2018Inngår i: International Journal of Infectious Diseases, ISSN 1201-9712, E-ISSN 1878-3511, Vol. 75, s. 26-33Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Antimicrobial resistance (AMR) in populations experiencing war has yet to be addressed, despite the abundance of contemporary conflicts and the protracted nature of twenty-first century wars, in combination with growing global concern over conflict-associated bacterial pathogens. The example of the Syrian conflict is used to explore the feasibility of using existing global policies on AMR in conditions of extreme conflict. The available literature on AMR and prescribing behaviour in Syria before and since the onset of the conflict in March 2011 was identified. Overall, there is a paucity of rigorous data before and since the onset of conflict in Syria to contextualize the burden of AMR. However, post onset of the conflict, an increasing number of studies conducted in neighbouring countries and Europe have reported AMR in Syrian refugees. High rates of multidrug resistance, particularly Gram-negative organisms, have been noted amongst Syrian refugees when compared with local populations. Conflict impedes many of the safeguards against AMR, creates new drivers, and exacerbates existing ones. Given the apparently high rates of AMR in Syria, in neighbouring countries hosting refugees, and in European countries providing asylum, this requires the World Health Organization and other global health institutions to address the causes, costs, and future considerations of conflict-related AMR as an issue of global governance. (c) 2018 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.

  • 3. Abbara, Aula
    et al.
    Rawson, Timothy M.
    Karah, Nabil
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    El-Amin, Wael
    Hatcher, James
    Tajaldin, Bachir
    Dar, Osman
    Dewachi, Omar
    Abu Sitta, Ghassan
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Sparrow, Annie
    Antimicrobial resistance in the context of the Syrian conflict: Drivers before and after the onset of conflict and key recommendations2018Inngår i: International Journal of Infectious Diseases, ISSN 1201-9712, E-ISSN 1878-3511, Vol. 73, s. 1-6Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Current evidence describing antimicrobial resistance (AMR) in the context of the Syrian conflict is of poor quality and sparse in nature. This paper explores and reports the major drivers of AMR that were present in Syria pre-conflict and those that have emerged since its onset in March 2011. Drivers that existed before the conflict included a lack of enforcement of existing legislation to regulate over-the-counter antibiotics and notification of communicable diseases. This contributed to a number of drivers of AMR after the onset of conflict, and these were also compounded by the exodus of trained staff, the increase in overcrowding and unsanitary conditions, the increase in injuries, and economic sanctions limiting the availability of required laboratory medical materials and equipment. Addressing AMR in this context requires pragmatic, multifaceted action at the local, regional, and international levels to detect and manage potentially high rates of multidrug-resistant infections. Priorities are (1) the development of a competent surveillance system for hospital-acquired infections, (2) antimicrobial stewardship, and (3) the creation of cost-effective and implementable infection control policies. However, it is only by addressing the conflict and immediate cessation of the targeting of health facilities that the rehabilitation of the health system, which is key to addressing AMR in this context, can progress. 

  • 4. Abraham, Nabil M.
    et al.
    Liu, Lei
    Jutras, Brandon Lyon
    Yadav, Akhilesh K.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Narasimhan, Sukanya
    Gopalakrishnan, Vissagan
    Ansari, Juliana M.
    Jefferson, Kimberly K.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Jacobs-Wagner, Christine
    Fikrig, Erol
    Pathogen-mediated manipulation of arthropod microbiota to promote infection2017Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 5, s. E781-E790Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal D-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.

  • 5. Addario, Barbara
    et al.
    Sandblad, Linda
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Backman, Lars
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Characterisation of Schizosaccharomyces pombe alpha-actinin2016Inngår i: PeerJ, ISSN 2167-8359, E-ISSN 2167-8359, Vol. 4, artikkel-id e1858Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The actin cytoskeleton plays a fundamental role in eukaryotic cells. Its reorganization is regulated by a plethora of actin-modulating proteins, such as a-actinin. In higher organisms, alpha-actinin is characterized by the presence of three distinct structural domains: an N-terminal actin-binding domain and a C-terminal region with EF-hand motif separated by a central rod domain with four spectrin repeats. Sequence analysis has revealed that the central rod domain of alpha-actinin from the fission yeast Schizosaccharomyces pombe consists of only two spectrin repeats. To obtain a firmer understanding of the structure and function of this unconventional alpha-actinin, we have cloned and characterized each structural domain. Our results show that this alpha-actinin isoform is capable of forming dimers and that the rod domain is required for this. However, its actin-binding and cross-linking activity appears less efficient compared to conventional alpha-actinins. The solved crystal structure of the actin-binding domain indicates that the closed state is stabilised by hydrogen bonds and a salt bridge not present in other a-actinins, which may reduce the affinity for actin.

  • 6.
    Ahlström, Ingela
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    A study of viral co-infection amongst children suffering from malar2013Independent thesis Advanced level (professional degree), 20 poäng / 30 hpOppgave
  • 7.
    Ahmad, Irfan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet; Department of Allied Health Sciences, University of Health Sciences.
    Cimdins, Annika
    Beske, Timo
    Römling, Ute
    Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium2017Inngår i: BMC Microbiology, ISSN 1471-2180, E-ISSN 1471-2180, Vol. 17, artikkel-id 27Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: The secondary messenger cyclic di-GMP promotes biofilm formation by up regulating the expression of csgD, encoding the major regulator of rdar biofilm formation in Salmonella typhimurium. The GGDEF/EAL domain proteins regulate the c-di-GMP turnover. There are twenty-two GGDEF/EAL domain proteins in the genome of S. typhimurium. In this study, we dissect the role of individual GGDEF/EAL proteins for csgD expression and rdar biofilm development. Results: Among twelve GGDEF domains, two proteins upregulate and among fifteen EAL domains, four proteins down regulate csgD expression. We identified two additional GGDEF proteins required to promote optimal csgD expression. With the exception of the EAL domain of STM1703, solely, diguanylate cyclase and phosphodiesterase activities are required to regulate csgD mediated rdar biofilm formation. Identification of corresponding phosphodiesterases and diguanylate cyclases interacting in the csgD regulatory network indicates various levels of regulation by c-di-GMP. The phosphodiesterase STM1703 represses transcription of csgD via a distinct promoter upstream region. Conclusion: The enzymatic activity and the protein scaffold of GGDEF/EAL domain proteins regulate csgD expression. Thereby, c-di-GMP adjusts csgD expression at multiple levels presumably using a multitude of input signals.

  • 8.
    Ahmad, Irfan
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
    Karah, Nabil
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nadeem, Aftab
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Analysis of colony phase variation switch in Acinetobacter baumannii clinical isolates2019Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 14, nr 1, artikkel-id e0210082Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Reversible switching between opaque and translucent colony formation is a novel feature of Acinetobacter baumannii that has been associated with variations in the cell morphology, surface motility, biofilm formation, antibiotic resistance and virulence. Here, we assessed a number of phenotypic alterations related to colony switching in A. baumannii clinical isolates belonging to different multi-locus sequence types. Our findings demonstrated that these phenotypic alterations were mostly strain-specific. In general, the translucent subpopulations of A. baumannii produced more dense biofilms, were more piliated, and released larger amounts of outer membrane vesicles (OMVs). In addition, the translucent subpopulations caused reduced fertility of Caenorhabditis elegans. When assessed for effects on the immune response in RAW 264.7 macrophages, the OMVs isolated from opaque subpopulations of A. baumannii appeared to be more immunogenic than the OMVs from the translucent form. However, also the OMVs from the translucent subpopulations had the potential to evoke an immune response. Therefore, we suggest that OMVs may be considered for development of new immunotherapeutic treatments against A. baumannii infections.

  • 9.
    Ahmad, Irfan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.
    Rouf, Syed Fazle
    Sun, Lei
    Cimdins, Annika
    Shafeeq, Sulman
    Le Guyon, Soazig
    Schottkowski, Marco
    Rhen, Mikael
    Romling, Ute
    BcsZ inhibits biofilm phenotypes and promotes virulence by blocking cellulose production in Salmonella enterica serovar Typhimurium2016Inngår i: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 15, artikkel-id 177Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Cellulose, a 1,4 beta-glucan polysaccharide, is produced by a variety of organisms including bacteria. Although the production of cellulose has a high biological, ecological and economical impact, regulatory mechanisms of cellulose biosynthesis are mostly unknown. Family eight cellulases are regularly associated with cellulose biosynthesis operons in bacteria; however, their function is poorly characterized. In this study, we analysed the role of the cellulase BcsZ encoded by the bcsABZC cellulose biosynthesis operon of Salmonella enterica serovar Typhimurium (S. Typhimurium) in biofilm related behavior. We also investigated the involvement of BcsZ in pathogenesis of S. Typhimurium including a murine typhoid fever infection model. Result: In S. Typhimurium, cellulase BcsZ with a putative periplasmic location negatively regulates cellulose biosynthesis. Moreover, as assessed with a non-polar mutant, BcsZ affects cellulose-associated phenotypes such as the rdar biofilm morphotype, cell clumping, biofilm formation, pellicle formation and flagella-dependent motility. Strikingly, although upregulation of cellulose biosynthesis was not observed on agar plate medium at 37 degrees C, BcsZ is required for efficient pathogen-host interaction. Key virulence phenotypes of S. Typhimurium such as invasion of epithelial cells and proliferation in macrophages were positively regulated by BcsZ. Further on, a bcsZ mutant was outcompeted by the wild type in organ colonization in the murine typhoid fever infection model. Selected phenotypes were relieved upon deletion of the cellulose synthase BcsA and/or the central biofilm activator CsgD. Conclusion: Although the protein scaffold has an additional physiological role, our findings indicate that the catalytic activity of BcsZ effectively downregulates CsgD activated cellulose biosynthesis. Repression of cellulose production by BcsZ subsequently enables Salmonella to efficiently colonize the host.

  • 10.
    Aili, Margareta
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Isaksson, Elin L
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Carlsson, Sara E
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Rosqvist, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Francis, Matthew S
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Regulation of Yersinia Yop-effector delivery by translocated YopE2008Inngår i: International Journal of Medical Microbiology, ISSN 1438-4221, E-ISSN 1618-0607, Vol. 298, nr 3-4, s. 183-192Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bacterial pathogen Yersinia pseudotuberculosis uses a type III secretion (T3S) system to translocate Yop effectors into eukaryotic cells. Effectors are thought to gain access to the cytosol via pores formed in the host cell plasma membrane. Translocated YopE can modulate this pore formation through its GTPase-activating protein (GAP) activity. In this study, we analysed the role of translocated YopE and all the other known Yop effectors in the regulation of effector translocation. Elevated levels of Yop effector translocation into HeLa cells occurred by YopE-defective strains, but not those defective for other Yop effectors. Only Yersinia devoid of YopK exhibits a similar hyper-translocation phenotype. Since both yopK and yopE mutants also failed to down-regulate Yop synthesis in the presence of eukaryotic cells, these data imply that translocated YopE specifically regulates subsequent effector translocation by Yersinia through at least one mechanism that involves YopK. We suggest that the GAP activity of YopE might be working as an intra-cellular probe measuring the amount of protein translocated by Yersinia during infection. This may be a general feature of T3S-associated GAP proteins, since two homologues from Pseudomonas aeruginosa, exoenzyme S (ExoS) and exoenzyme T (ExoT), can complement the hyper-translocation phenotypes of the yopE GAP mutant.

  • 11.
    Aili, Margareta
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Telepnev, Max
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Hallberg, Bengt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, Hans
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Rosqvist, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    In vitro GAP activity towards RhoA, Rac1 and Cdc42 is not a prerequisite for YopE induced HeLa cell cytotoxicity2003Inngår i: Microbial Pathogenesis, ISSN 0882-4010, E-ISSN 1096-1208, Vol. 34, nr 6, s. 297-308Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The YopE cytotoxin of Yersinia is an essential virulence determinant that is translocated into the eukaryotic target cell via a plasmid-encoded type III secretion system. YopE possess a GTPase activating protein activity that in vitro has been shown to down regulate RhoA, Rac1, and Cdc42. Translocated YopE induces de-polymerisation of the actin microfilament structure in the eukaryotic cell which results in a rounding up of infected cells described as a cytotoxic effect. Here, we have investigated the importance of different regions of YopE for induction of cytotoxicity and in vitro GAP activity. Sequential removal of the N- and C-terminus of YopE identified the region between amino acids 90 and 215 to be necessary for induction of cytotoxicity. Internal deletions containing the essential arginine at position 144 resulted in a total loss of cytotoxic response. In-frame deletions flanking the arginine finger defined a region important for the cytotoxic effect to amino acids 166–183. Four triple-alanine substitution mutants in this region, YopE166-8A, 169-71A, 175-7A and 178-80A were still able to induce cytotoxicity on HeLa cells although they did not show any in vitro GAP activity towards RhoA, Rac1 or Cdc42. A substitution mutant in position 206-8A showed the same phenotype, ability to induce cytotoxic response but no in vitro GAP activity. We speculate that YopE may have additional unidentified targets within the eukaryotic cell.

  • 12.
    Akopyan, Karen
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Edgren, Tomas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Wang-Edgren, Helen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Rosqvist, Roland
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Fahlgren, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Wolf-Watz, Hans
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Fällman, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Translocation of surface-localized effectors in type III secretion2011Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 108, nr 4, s. 1639-1644Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Pathogenic Yersinia species suppress the host immune response by using a plasmid-encoded type III secretion system (T3SS) to translocate virulence proteins into the cytosol of the target cells. T3SS-dependent protein translocation is believed to occur in one step from the bacterial cytosol to the target-cell cytoplasm through a conduit created by the T3SS upon target cell contact. Here, we report that T3SS substrates on the surface of Yersinia pseudotuberculosis are translocated into target cells. Upon host cell contact, purified YopH coated on Y. pseudotuberculosis was specifically and rapidly translocated across the target-cell membrane, which led to a physiological response in the infected cell. In addition, translocation of externally added YopH required a functional T3SS and a specific translocation domain in the effector protein. Efficient, T3SS-dependent translocation of purified YopH added in vitro was also observed when using coated Salmonella typhimurium strains, which implies that T3SS-mediated translocation of extracellular effector proteins is conserved among T3SS-dependent pathogens. Our results demonstrate that polarized T3SS-dependent translocation of proteins can be achieved through an intermediate extracellular step that can be reconstituted in vitro. These results indicate that translocation can occur by a different mechanism from the assumed single-step conduit model.

  • 13. Akram, Neelam
    et al.
    Palovaara, Joakim
    Forsberg, Jeremy
    Lindh, Markus V.
    Milton, Debra L.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Luo, Haiwei
    Gonzalez, Jose M.
    Pinhassi, Jarone
    Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp AND42013Inngår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 15, nr 5, s. 1400-1415Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.

  • 14. Alaridah, Nader
    et al.
    Hallbäck, Erika Tång
    Tångrot, Jeanette
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). National Bioinformatics Infrastructure Sweden (NBIS), SciLifeLab, Computational Life Science Cluster, Umeå University, Umeå, Sweden.
    Winqvistz, Niclas
    Sturegard, Erik
    Floren-Johanssons, Kerstin
    Jonsson, Bodil
    Tenland, Erik
    Welinder-Olssons, Christina
    Medstrand, Patrik
    Kaijser, Bertil
    Godaly, Gabriela
    Transmission dynamics study of tuberculosis isolates with whole genome sequencing in southern Sweden2019Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 9, artikkel-id 4931Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Epidemiological contact tracing complemented with genotyping of clinical Mycobacterium tuberculosis isolates is important for understanding disease transmission. In Sweden, tuberculosis (TB) is mostly reported in migrant and homeless where epidemiologic contact tracing could pose a problem. This study compared epidemiologic linking with genotyping in a low burden country. Mycobacterium tuberculosis isolates (n = 93) collected at Scania University Hospital in Southern Sweden were analysed with the standard genotyping method mycobacterial interspersed repetitive units-variable number tandem repeats (MIRU-VNTR) and the results were compared with whole genome sequencing (WGS). Using a maximum of twelve single nucleotide polymorphisms (SNPs) as the upper threshold of genomic relatedness noted among hosts, we identified 18 clusters with WGS comprising 52 patients with overall pairwise genetic maximum distances ranging from zero to nine SNPs. MIRU-VNTR and WGS clustered the same isolates, although the distribution differed depending on MIRU-VNTR limitations. Both genotyping techniques identified clusters where epidemiologic linking was insufficient, although WGS had higher correlation with epidemiologic data. To summarize, WGS provided better resolution of transmission than MIRU-VNTR in a setting with low TB incidence. WGS predicted epidemiologic links better which could consolidate and correct the epidemiologically linked cases, avoiding thus false clustering.

  • 15. Albrecht, Letusa
    et al.
    Moll, Kirsten
    Blomqvist, Karin
    Normark, Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Chen, Qijun
    Wahlgren, Mats
    var gene transcription and PfEMP1 expression in the rosetting and cytoadhesive Plasmodium falciparum clone FCR3S1.22011Inngår i: Malaria Journal, ISSN 1475-2875, E-ISSN 1475-2875, Vol. 10, artikkel-id 17Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: The pathogenicity of Plasmodium falciparum is in part due to the ability of the parasitized red blood cell (pRBC) to adhere to intra- vascular host cell receptors and serum-proteins. Binding of the pRBC is mediated by Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), a large multi-variant molecule encoded by a family of approximate to 60 var genes. Methods: The study of var gene transcription in the parasite clone FCR3S1.2 was performed by semi-quantitative PCR and quantitative PCR (qPCR). The expression of the major PfEMP1 in FCR3S1.2 pRBC was analysed with polyclonal sera in rosette disruption assays and immunofluorecence. Results: Transcripts from var1 (FCR3S1.2(var1); IT4var21) and other var genes were detected by semi-quantitative PCR but results from qPCR showed that one var gene transcript dominated over the others (FCR3S1.2var2; IT4var60). Antibodies raised in rats to the recombinant NTS-DBL1a of var2 produced in E. coli completely and dosedependently disrupted rosettes (approximate to 95% at a dilution of 1/5). The sera reacted with the Maurer's clefts in trophozoite stages (IFA) and to the infected erythrocyte surface (FACS) indicating that FCR3S1.2var2 encodes the dominant PfEMP1 expressed in this parasite. Conclusion: The major transcript in the rosetting model parasite FCR3S1.2 is FCR3S1.2var2 (IT4var60). The results suggest that this gene encodes the PfEMP1-species responsible for the rosetting phenotype of this parasite. The activity of previously raised antibodies to the NTS-DBL1a of FCR3S1.2var1 is likely due to cross-reactivity with NTS-DBL1 alpha of the var2 encoded PfEMP1.

  • 16. Aldick, Thomas
    et al.
    Bielaszewska, Martina
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Humpf, Hans-Ulrich
    Wai, Sun Nyunt
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Karch, Helge
    Vesicular stabilization and activity augmentation of enterohaemorrhagic Escherichia coli haemolysin2009Inngår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 71, nr 6, s. 1496-508Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Haemolysin from enterohaemorrhagic Escherichia coli (EHEC-Hly), a putative EHEC virulence factor, belongs to the RTX (repeat-in-toxin) family whose members rapidly inactivate themselves by self-aggregation. By investigating the status of EHEC-Hly secreted extracellularly, we found the toxin both in a free, soluble form and associated, with high tendency and independently of its acylation status, to outer membrane vesicles (OMVs) extruded by EHEC. We compared the interaction of both toxin forms with erythrocytes using scanning electron microscopy and binding assays. The OMV-associated toxin was substantially (80 times) more stable under physiological conditions than the free EHEC-Hly as demonstrated by prolonged haemolytic activity (half-life time 20 h versus 15 min). The haemolysis was preceded by calcium-dependent binding of OMVs carrying EHEC-Hly to erythrocytes; this binding was mediated by EHEC-Hly. We demonstrate that EHEC-Hly is a biologically active cargo in OMVs with dual roles: a cell-binding protein and a haemolysin. These paired functions produce a biologically potent form of the OMV-associated RTX toxin and augment its potential towards target cells. Our findings provide a general concept for stabilization of RTX toxins and open new insights into the biology of these important virulence factors.

  • 17. Alekeyenko, Artyom A.
    et al.
    Ho, Joshua W. K.
    Peng, Shouyong
    Gelbart, Marnie
    Tolstorukov, Michael Y.
    Plachetka, Annette
    Kharchenko, Peter V.
    Jung, Youngsook L.
    Gorchakov, Andrey A.
    Larschan, Erica
    Gu, Tingting
    Minoda, Aki
    Riddle, Nicole C.
    Schwartz, Yuri B.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Elgin, Sarah C. R.
    Karpen, Gary H.
    Pirrotta, Vincenzo
    Kuroda, Mitzi I.
    Park, Peter J.
    Sequence-Specific Targeting of Dosage Compensation in Drosophila Favors an Active Chromatin Context2012Inngår i: PLoS Genetics, ISSN 1553-7390, Vol. 8, nr 4, s. e1002646-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Drosophila MSL complex mediates dosage compensation by increasing transcription of the single X chromosome in males approximately two-fold. This is accomplished through recognition of the X chromosome and subsequent acetylation of histone H4K16 on X-linked genes. Initial binding to the X is thought to occur at "entry sites" that contain a consensus sequence motif ("MSL recognition element" or MRE). However, this motif is only similar to 2 fold enriched on X, and only a fraction of the motifs on X are initially targeted. Here we ask whether chromatin context could distinguish between utilized and non-utilized copies of the motif, by comparing their relative enrichment for histone modifications and chromosomal proteins mapped in the modENCODE project. Through a comparative analysis of the chromatin features in male S2 cells (which contain MSL complex) and female Kc cells (which lack the complex), we find that the presence of active chromatin modifications, together with an elevated local GC content in the surrounding sequences, has strong predictive value for functional MSL entry sites, independent of MSL binding. We tested these sites for function in Kc cells by RNAi knockdown of Sxl, resulting in induction of MSL complex. We show that ectopic MSL expression in Kc cells leads to H4K16 acetylation around these sites and a relative increase in X chromosome transcription. Collectively, our results support a model in which a pre-existing active chromatin environment, coincident with H3K36me3, contributes to MSL entry site selection. The consequences of MSL targeting of the male X chromosome include increase in nucleosome lability, enrichment for H4K16 acetylation and JIL-1 kinase, and depletion of linker histone H1 on active X-linked genes. Our analysis can serve as a model for identifying chromatin and local sequence features that may contribute to selection of functional protein binding sites in the genome.

  • 18.
    Alenius, Mattias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Bohm, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Differential function of RNCAM isoforms in precise target selection of olfactory sensory neurons2003Inngår i: Development, ISSN 0950-1991, E-ISSN 1477-9129, Vol. 130, nr 5, s. 917-927Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Olfactory sensory neurons (OSNs) are individually specified to express one odorant receptor (OR) gene among similar to1000 different and project with precision to topographically defined convergence sites, the glomeruli, in the olfactory bulb. Although ORs partially determine the location of convergence sites, the mechanism ensuring that axons with different OR identities do not co-converge is unknown. RNCAM (OCAM, NCAM2) is assumed to regulate a broad zonal segregation of projections by virtue of being a homophilic cell adhesion molecule that is selectively expressed on axons terminating in a defined olfactory bulb region. We have identified NADPH diaphorase activity as being an independent marker for RNCAM-negative axons. Analyses of transgenic mice that ectopically express RNCAM in NADPH diaphorasepositive OSNs show that the postulated function of RNCAM in mediating zone-specific segregation of axons is unlikely. Instead, analyses of one OR-specific OSN subpopulation (P2) reveal that elevated RNCAM levels result in an increased number of P2 axons that incorrectly co-converge with axons of other OR identities. Both Gpianchored and transmembrane-bound RNCAM isoforms are localized on axons in the nerve layer, while the transmembrane-bound RNCAM is the predominant isoform on axon terminals within glomeruli. Overexpressing transmembrane-bound RNCAM results in co-convergence events close to the correct target glomeruli. By contrast, overexpression of Gpi-anchored RNCAM results in axons that can bypass the correct target before co-converging on glomeruli located at a distance. The phenotype specific for Gpi-anchored RNCAM is suppressed in mice overexpressing both isoforms, which suggests that two distinct RNCAM isoform-dependent activities influence segregation of OR-defined axon subclasses.

  • 19.
    Alenius, Mattias
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå University.
    Bohm, Staffan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Identification of a novel neural cell adhesion molecule-related gene with a potential role in selective axonal projection1997Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 272, nr 42, s. 26083-26086Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We describe here the cloning of mouse complementary DNAs encoding a novel protein, Rb-8 neural cell adhesion molecule (RNCAM), with a predicted extracellular region of five immunoglobulin Ca-type domains followed by two fibronectin type III domains, Alternative splicing is likely to generate two RNCAM isoforms, which are differently attached to the cell membrane, These structural features and overall sequence identity identify this protein as a novel member of a cell adhesion molecule subgroup together with vertebrate neural cell adhesion molecule, Aplysia cell adhesion molecule, and Drosophila fasciclin II, In insects, fasciclin II is present on a restricted subset of embryonic central nervous system axons where it controls selective axon fasciculation. Intriguingly, RNCAM likewise is expressed in subsets of olfactory and vomeronasal neurons with topographically defined axonal projections, The spatial expression RNCAM corresponds precisely to that of certain odorant receptor expression zones of the olfactory epithelium. These expression patterns thus render RNCAM the first described cell adhesion molecule with a potential regulatory role in formation of selective axonal projections important for olfactory sensory information coding.

  • 20.
    Aliashkevich, Alena
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Alvarez, Laura
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    New Insights Into the Mechanisms and Biological Roles of D-Amino Acids in Complex Eco-Systems2018Inngår i: Frontiers in Microbiology, ISSN 1664-302X, E-ISSN 1664-302X, Vol. 9, artikkel-id 683Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In the environment bacteria share their habitat with a great diversity of organisms, from microbes to humans, animals and plants. In these complex communities, the production of extracellular effectors is a common strategy to control the biodiversity by interfering with the growth and/or viability of nearby microbes. One of such effectors relies on the production and release of extracellular D-amino acids which regulate diverse cellular processes such as cell wall biogenesis, biofilm integrity, and spore germination. Non-canonical D-amino acids are mainly produced by broad spectrum racemases (Bsr). Bsr's promiscuity allows it to generate high concentrations of D-amino acids in environments with variable compositions of L-amino acids. However, it was not clear until recent whether these molecules exhibit divergent functions. Here we review the distinctive biological roles of D-amino acids, their mechanisms of action and their modulatory properties of the biodiversity of complex eco-systems.

  • 21. Alitalo, Antti
    et al.
    Meri, Taru
    Comstedt, Pär
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Jeffery, Luke
    Tornberg, Johanna
    Strandin, Tomas
    Lankinen, Hilkka
    Bergström, Sven
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Cinco, Marina
    Vuppala, Santosh R
    Akins, Darrin R
    Meri, Seppo
    Expression of complement factor H binding immunoevasion proteins in Borrelia garinii isolated from patients with neuroborreliosis.2005Inngår i: Eur J Immunol, ISSN 0014-2980, Vol. 35, nr 10, s. 3043-3053Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Lyme disease-pathogen Borrelia burgdorferi binds the complement inhibitor factor H (FH) to its outer surface protein E- (OspE) and BbA68-families of lipoproteins. In earlier studies, only serum-resistant strains of the genospecies B. burgdorferi sensu stricto or B. afzelii, but not serum-sensitive B. garinii strains, have been shown to bind FH. Since B. garinii often causes neuroborreliosis in man, we have readdressed the interactions of B. garinii with FH. B. garinii 50/97 strain did not express FH-binding proteins. By transforming the B. garinii 50/97 strain with an OspE-encoding gene from complement-resistant B. burgdorferi (ospE-297), its resistance to serum killing could be increased. OspE genes were detected and cloned from the B. garinii BITS, Pistoia and 40/97 strains by PCR and sequencing. The deduced amino acid sequences differed in an N-terminal lysine-rich FH-binding region from OspE sequences of resistant strains. Recombinant B. garinii BITS OspE protein was found to have a considerably lower FH-binding activity than the B. burgdorferi sensu stricto 297 OspE protein P21 (P21-297). Unlike bacteria that had been kept in culture for a long time, neurovirulent B. garinii strains from neuroborreliosis patients were found to express approximately 27-kDa FH-binding proteins. These were not recognized by polyclonal anti-OspE or anti-BbA68 antibodies. We conclude that B. garinii strains carry ospE genes but have a decreased expression of OspE proteins and a reduced ability to bind FH, especially when grown for prolonged periods in vitro. Recently isolated neuroinvasive B. garinii strains, however, can express FH-binding proteins, which may contribute to the virulence of neuroborreliosis-causing B. garinii strains.

  • 22. Allas, Ular
    et al.
    Toom, Lauri
    Selyutina, Anastasia
    Maeorg, Uno
    Medina, Ricardo
    Merits, Andres
    Rinken, Ago
    Hauryliuk, Vasili
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). University of Tartu, Institute of Technology, Nooruse 1, Tartu 50411, Estonia.
    Kaldalu, Niilo
    Tenson, Tanel
    Antibacterial activity of the nitrovinylfuran G1 (Furvina) and its conversion products2016Inngår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, artikkel-id 36844Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    2-Bromo-5-(2-bromo-2-nitrovinyl) furan (G1 or Furvina) is an antimicrobial with a direct reactivity against thiol groups. It is active against Gram-positive and Gram-negative bacteria, yeasts and filamentous fungi. By reacting with thiol groups it causes direct damage to proteins but, as a result, is very short-living and interconverts into an array of reaction products. Our aim was to characterize thiol reactivity of G1 and its conversion products and establish how much of antimicrobial and cytotoxic effects are due to the primary activity of G1 and how much can be attributed to its reaction products. Stability of G1 in growth media as well as its conversion in the presence of thiols was characterized. The structures of G1 decomposition products were determined using NMR and mass-spectroscopy. Concentration-and time-dependent killing curves showed that G1 is bacteriostatic for Escherichia coli at the concentration of 16 mu g/ml and bactericidal at 32 mu g/ml. However, G1 is inefficient against non-growing E. coli. Addition of cysteine to medium reduces the antimicrobial potency of G1. Nevertheless, the reaction products of G1 and cysteine enabled prolonged antimicrobial action of the drug. Therefore, the activity of 2-bromo-5-(2-bromo-2-nitrovinyl) furan is a sum of its immediate reactivity and the antibacterial effects of the conversion products.

  • 23.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Bacterial Competition Assay Based on Extracellular D-amino Acid Production2018Inngår i: Bio-protocol, E-ISSN 2331-8325, Vol. 8, nr 7, artikkel-id e2787Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bacteria live in polymicrobial communities under tough competition. To persist in a specific niche many species produce toxic extracellular effectors as a strategy to interfere with the growth of nearby microbes. One of such effectors are the non-canonical D-amino acids. Here we describe a method to test the effect of D-amino acid production in fitness/survival of bacterial subpopulations within a community. Co-cultivation methods usually involve the growth of the competing bacteria in the same container. Therefore, within such mixed cultures the effect on growth caused by extracellular metabolites cannot be distinguished from direct physical interactions between species (e.g., T6SS effectors). However, this problem can be easily solved by using a filtration unit that allows free diffusion of small metabolites, like L- and D-amino acids, while keeping the different subpopulations in independent compartments. With this method, we have demonstrated that D-arginine is a bactericide effector produced by Vibrio cholerae, which strongly influences survival of diverse microbial subpopulations. Moreover, D-arginine can be used as a cooperative instrument in mixed Vibrio communities to protect non-producing members from competing bacteria.

  • 24.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Espaillat, Akbar
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Hermoso, Juan A.
    de Pedro, Miguel A.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Peptidoglycan Remodeling by the Coordinated Action of Multispecific Enzymes2014Inngår i: Microbial Drug Resistance, ISSN 1076-6294, E-ISSN 1931-8448, Vol. 20, nr 3, s. 190-198Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The peptidoglycan (PG) cell wall constitutes the main defense barrier of bacteria against environmental insults and acts as communication interface. The biochemistry of this macromolecule has been well characterized throughout the years but recent discoveries have unveiled its chemical plasticity under environmental stresses. Non-canonical D-amino acids (NCDAA) are produced and released to the extracellular media by diverse bacteria. Such molecules govern cell wall adaptation to challenging environments through their incorporation into the polymer, a widespread capability among bacteria that reveals the inherent catalytic plasticity of the enzymes involved in the cell wall metabolism. Here, we analyze the recent structural and biochemical characterization of Bsr, a new family of broad spectrum racemases able to generate a wide range of NCDAA. We also discuss the necessity of a coordinated action of PG multispecific enzymes to generate adequate levels of modification in the murein sacculus. Finally, we also highlight how this catalytic plasticity of NCDAA-incorporating enzymes has allowed the development of new revolutionary methodologies for the study of PG modes of growth and in vivo dynamics.

  • 25.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Hernandez, Sara B
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    de Pedro, Miguel A
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ultra-sensitive, high-resolution liquid chromatography methods for the high-throughput quantitative analysis of bacterial cell wall chemistry and structure2016Inngår i: Bacterial cell wall homeostasis: methods and protocols /edited by Hee-Jeon Hong / [ed] Hee-Jeon Hong, New York: Humana Press, 2016, Vol. 1440, s. 11-27Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    High-performance liquid chromatography (HPLC) analysis has been critical for determining the structural and chemical complexity of the cell wall. However this method is very time consuming in terms of sample preparation and chromatographic separation. Here we describe (1) optimized methods for peptidoglycan isolation from both Gram-negative and Gram-positive bacteria that dramatically reduce the sample preparation time, and (2) the application of the fast and highly efficient ultra-performance liquid chromatography (UPLC) technology to muropeptide separation and quantification. The advances in both analytical instrumentation and stationary-phase chemistry have allowed for evolved protocols which cut run time from hours (2-3 h) to minutes (10-20 min), and sample demands by at least one order of magnitude. Furthermore, development of methods based on organic solvents permits in-line mass spectrometry (MS) of the UPLC-resolved muropeptides. Application of these technologies to high-throughput analysis will expedite the better understanding of the cell wall biology.

  • 26.
    Alvarez, Laura
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Madrid, Spain.
    Quintáns, Nieves G.
    Blesa, Alba
    Baquedano, Ignacio
    Mencía, Mario
    Bricio, Carlos
    Berenguer, José
    Hierarchical control of nitrite respiration by transcription factors encoded within mobile gene clusters of Thermus thermophilus2017Inngår i: Genes, ISSN 2073-4425, E-ISSN 2073-4425, Vol. 8, nr 12, artikkel-id 361Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Denitrification in Thermus thermophilus is encoded by the nitrate respiration conjugative element (NCE) and nitrite and nitric oxide respiration (nic) gene clusters. A tight coordination of each cluster's expression is required to maximize anaerobic growth, and to avoid toxicity by intermediates, especially nitric oxides (NO). Here, we study the control of the nitrite reductases (Nir) and NO reductases (Nor) upon horizontal acquisition of the NCE and nic clusters by a formerly aerobic host. Expression of the nic promoters PnirS, PnirJ, and PnorC, depends on the oxygen sensor DnrS and on the DnrT protein, both NCE-encoded. NsrR, a nic-encoded transcription factor with an iron-sulfur cluster, is also involved in Nir and Nor control. Deletion of nsrR decreased PnorC and PnirJ transcription, and activated PnirS under denitrification conditions, exhibiting a dual regulatory role never described before for members of the NsrR family. On the basis of these results, a regulatory hierarchy is proposed, in which under anoxia, there is a pre-activation of the nic promoters by DnrS and DnrT, and then NsrR leads to Nor induction and Nir repression, likely as a second stage of regulation that would require NO detection, thus avoiding accumulation of toxic levels of NO. The whole system appears to work in remarkable coordination to function only when the relevant nitrogen species are present inside the cell.

  • 27.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Costa, Tiago
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Farag, Salah
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Avican, Ummehan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Francis, Matthew
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Genetically engineered frameshifted YopN-TyeA chimeras influence type III secretion system function in Yersinia pseudotuberculosis2013Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 10, artikkel-id e77767Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Type III secretion is a tightly controlled virulence mechanism utilized by many gram negative bacteria to colonize their eukaryotic hosts. To infect their host, human pathogenic Yersinia spp. translocate protein toxins into the host cell cytosol through a preassembled Ysc-Yop type III secretion device. Several of the Ysc-Yop components are known for their roles in controlling substrate secretion and translocation. Particularly important in this role is the YopN and TyeA heterodimer. In this study, we confirm that Y. pseudotuberculosis naturally produce a 42 kDa YopN-TyeA hybrid protein as a result of a +1 frame shift near the 3 prime of yopN mRNA, as has been previously reported for the closely related Y. pestis. To assess the biological role of this YopN-TyeA hybrid in T3SS by Y. pseudotuberculosis, we used in cis site-directed mutagenesis to engineer bacteria to either produce predominately the YopN-TyeA hybrid by introducing +1 frame shifts to yopN after codon 278 or 287, or to produce only singular YopN and TyeA polypeptides by introducing yopN sequence from Y. enterocolitica, which is known not to produce the hybrid. Significantly, the engineered 42 kDa YopN-TyeA fusions were abundantly produced, stable, and were efficiently secreted by bacteria in vitro. Moreover, these bacteria could all maintain functionally competent needle structures and controlled Yops secretion in vitro. In the presence of host cells however, bacteria producing the most genetically altered hybrids (+1 frameshift after 278 codon) had diminished control of polarized Yop translocation. This corresponded to significant attenuation in competitive survival assays in orally infected mice, although not at all to the same extent as Yersinia lacking both YopN and TyeA proteins. Based on these studies with engineered polypeptides, most likely a naturally occurring YopN-TyeA hybrid protein has the potential to influence T3S control and activity when produced during Yersinia-host cell contact.

  • 28.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gurung, Jyoti
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Costa, Tiago
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ruuth, Kristina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Zavialov, Anton
    Joint Biotechnology Laboratory, Department of Chemistry, University of Turku, Turku, Finland.
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Francis, Matthew S
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    YopN and TyeA Hydrophobic Contacts Required for Regulating Ysc-Yop Type III Secretion Activity by Yersinia pseudotuberculosis2016Inngår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 6, artikkel-id 66Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type. Thus, this YopN C-terminal segment was analyzed for its role in type III secretion control. Bacteria producing YopN truncated after residue 278, or with altered sequence between residues 279 and 287, had lost type III secretion control and function. In contrast, YopN variants with manipulated sequence beyond residue 287 maintained full control and function. Scrutiny of the YopN-TyeA complex structure revealed that residue W279 functioned as a likely hydrophobic contact site with TyeA. Indeed, a YopNW279G mutant lost all ability to bind TyeA. The TyeA residue F8 was also critical for reciprocal YopN binding. Thus, we conclude that specific hydrophobic contacts between opposing YopN and TyeA termini establishes a complex needed for regulating Ysc-Yop activity.

  • 29.
    Amer, Ayad
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Åhlund, Monika
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Bröms, Jeanette
    Department of Medical Countermeasures, Swedish Defense Research Agency, Division of NBC12 Defense, Umeå, Sweden.
    Forsberg, Åke
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Francis, Matthew
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Impact of the N-terminal secretor domain on YopD translocator function in Yersinia pseudotuberculosis type III secretion2011Inngår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 193, nr 23, s. 6683-6700Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Type III secretion systems (T3SSs) secrete needle components, pore-forming translocators, and the translocated effectors. In part, effector recognition by a T3SS involves their N-terminal amino acids and their 5′ mRNA. To investigate whether similar molecular constraints influence translocator secretion, we scrutinized this region within YopD from Yersinia pseudotuberculosis. Mutations in the 5′ end of yopD that resulted in specific disruption of the mRNA sequence did not affect YopD secretion. On the other hand, a few mutations affecting the protein sequence reduced secretion. Translational reporter fusions identified the first five codons as a minimal N-terminal secretion signal and also indicated that the YopD N terminus might be important for yopD translation control. Hybrid proteins in which the N terminus of YopD was exchanged with the equivalent region of the YopE effector or the YopB translocator were also constructed. While the in vitro secretion profile was unaltered, these modified bacteria were all compromised with respect to T3SS activity in the presence of immune cells. Thus, the YopD N terminus does harbor a secretion signal that may also incorporate mechanisms of yopD translation control. This signal tolerates a high degree of variation while still maintaining secretion competence suggestive of inherent structural peculiarities that make it distinct from secretion signals of other T3SS substrates.

  • 30.
    Anderl, Ines
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Activation of the Cellular Immune Response in Drosophila melanogaster Larvae2015Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    During the last 40 years, Drosophila melanogaster has become an invaluable tool in understanding innate immunity. The innate immune system of Drosophila consists of a humoral and a cellular component. While many details are known about the humoral immune system, our knowledge about the cellular immune system is comparatively small. Blood cells or hemocytes constitute the cellular immune system. Three blood types have been described for Drosophila larvae. Plasmatocytes are phagocytes with a plethora of functions. Crystal cells mediate melanization and contribute to wound healing. Plasmatocytes and crystal cells constitute the blood cell repertoire of a healthy larva, whereas lamellocytes are induced in a demand-adapted manner after infection with parasitoid wasp eggs. They are involved in the melanotic encapsulation response against parasites and form melanotic nodules that are also referred to as tumors.

    In my thesis, I focused on unraveling the mechanisms of how the immune system orchestrates the cellular immune response. In particular, I was interested in the hematopoiesis of lamellocytes.

    In Article I, we were able to show that ectopic expression of key components of a number of signaling pathways in blood cells induced the development of lamellocytes, led to a proliferative response of plasmatocytes, or to a combination of lamellocyte activation and plasmatocyte proliferation.

    In Article II, I combined newly developed fluorescent enhancer-reporter constructs specific for plasmatocytes and lamellocytes and developed a “dual reporter system” that was used in live microscopy of fly larvae. In addition, we established flow cytometry as a tool to count total blood cell numbers and to distinguish between different blood cell types. The “dual reporter system” enabled us to differentiate between six blood cell types and established proliferation as a central feature of the cellular immune response. The combination flow cytometry and live imaging increased our understanding of the tempo-spatial events leading to the cellular immune reaction.

    In Article III, I developed a genetic modifier screen to find genes involved in the hematopoiesis of lamellocytes. I took advantage of the gain-of-function phenotype of the Tl10b mutation characterized by an activated cellular immune system, which induced the formation blood cell tumors. We screened the right arm of chromosome 3 for enhancers and suppressors of this mutation and uncovered ird1.

    Finally in Article IV, we showed that the activity of the Toll signaling pathway in the fat body, the homolog of the liver, is necessary to activate the cellular immune system and induce lamellocyte hematopoiesis.

  • 31.
    Anderl, Ines
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Infection-induced proliferation is a central hallmark of the activation of the cellular immune response in Drosophila larvae.Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Blood cells have important roles in immune reactions in all metazoan species. In Drosophila melanogaster larvae, phagocytic plasmatocytes are the main blood cell (hemocyte) type. Lamellocytes participate in encapsulating foreign objects and are formed in response to parasitoid wasps laying their eggs into the hemocoel of the larvae. The immune reaction against wasps requires controlled recruitment and action of hemocytes from the lymph glands, sessile islets and circulation. However, the contribution of these different hematopoietic compartments to the immune-induced hemocyte pool remains unclear. We used eater-GFP and MSNF9MO-mCherry to fluorescently tag plasmatocytes and lamellocytes, respectively, and utilized flow cytometry and in vivo imaging to assess the hemocyte numbers and types in circulation and in sessile compartments after infection by three wasp species of the genus Leptopilina. We detected five different hemocyte types based on fluorescence, and a population of non-fluorescent cells. While non-infected larvae generally had only one, eaterGFP-high plasmatocyte population, early after wasp infection a new, eaterGFP-low cell population appeared in circulation. EaterGFP-high and –low cells both accumulated msnCherry during the immune response, and formed two cell lineages. Whereas the eaterGFP-low cells gradually lost GFP, the eaterGFP-high cells retained it at high levels. We suggest that eaterGFP-low cells represent an immune-induced hemocyte precursor cell pool, which, via a prelamellocyte stage, gives rise to lamellocytes. EaterGFP-high plasmatocytes also differentiated into large, msnCherry-positive hemocytes on wasp eggs, but these cells retain plasmatocyte identity. Importantly, all hemocyte types, except for lamellocytes, were able to divide after wasp infection, contributing to the increased hemocyte numbers after infection. We conclude that orchestrated differentiation and division of different hemocyte types in circulation and in sessile compartment is key to a successful immune response against parasitoid wasps.

  • 32.
    Anderl, Ines
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland.
    Hultmark, Dan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Laboratory of Genetic Immunology, BioMediTech, University of Tampere, Tampere, Finland.
    New ways to make a blood cell2015Inngår i: eLIFE, E-ISSN 2050-084X, Vol. 4, artikkel-id e06877Artikkel i tidsskrift (Annet vitenskapelig)
  • 33.
    Anderl, Ines
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland.
    Vesala, Laura
    Ihalainen, Teemu O.
    Vanha-aho, Leena-Maija
    Andó, István
    Rämet, Mika
    Hultmark, Dan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Institute of Biosciences and Medical Technology, BioMediTech, University of Tampere, Tampere, Finland.
    Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection2016Inngår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 12, nr 7, artikkel-id e1005746Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Cellular immune responses require the generation and recruitment of diverse blood cell types that recognize and kill pathogens. In Drosophila melanogaster larvae, immune-inducible lamellocytes participate in recognizing and killing parasitoid wasp eggs. However, the sequence of events required for lamellocyte generation remains controversial. To study the cellular immune system, we developed a flow cytometry approach using in vivo reporters for lamellocytes as well as for plasmatocytes, the main hemocyte type in healthy larvae. We found that two different blood cell lineages, the plasmatocyte and lamellocyte lineages, contribute to the generation of lamellocytes in a demand-adapted hematopoietic process. Plasmatocytes transdifferentiate into lamellocyte-like cells in situ directly on the wasp egg. In parallel, a novel population of infection-induced cells, which we named lamelloblasts, appears in the circulation. Lamelloblasts proliferate vigorously and develop into the major class of circulating lamellocytes. Our data indicate that lamellocyte differentiation upon wasp parasitism is a plastic and dynamic process. Flow cytometry with in vivo hemocyte reporters can be used to study this phenomenon in detail.

  • 34.
    Andersson, Christopher
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Regulatory pathways and virulence inhibition in Listeria monocytogenes2016Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Listeria monocytogenes is a rod-shaped Gram positive bacterium. It generally exist ubiquitously in nature, where it lives as a saprophyte. Occasionally it however enters the food chain, from where it can be ingested by humans and cause gastro-intestinal distress. In immunocompetent individuals L. monocytogenes is generally cleared within a couple of weeks, but in immunocompromised patients it can progress to listeriosis, a potentially life-threatening infection in the central nervous system. If the infected individual is pregnant, the bacteria can cross the placental barrier and infect the fetus, possibly leading to spontaneous abortion.

    The infectivity of L. monocytogenes requires a certain set of genes, and the majority of them is dependent on the transcriptional regulator PrfA. The expression and activity of PrfA is controlled at several levels, and has traditionally been viewed to be active at 37 °C (virulence conditions) where it bind as a homodimer to a “PrfA-box” and induces the expression of the downstream gene.

    One of these genes is ActA, which enables intracellular movement by recruiting an actin polymerizing protein complex. When studying the effects of a blue light receptor we surprisingly found an effect of ActA at non-virulent conditions, where it is required for the bacteria to properly react to light exposure.

    To further study the PrfA regulon we tested deletion mutants of several PrfA-regulated virulence genes in chicken embryo infection studies. Based on these studies we could conclude that the chicken embryo model is a viable complement to traditional murine models, especially when investigating non-traditional internalin pathogenicity pathways. We have also studied the effects of small molecule virulence inhibitors that, by acting on PrfA, can inhibit L. monocytogenes infectivity in cell cultures with concentrations in the low micro-molar range.

  • 35.
    Andersson, Christopher
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gripenland, Jonas
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Using the chicken embryo to assess virulence of Listeria monocytogenes and to model other microbial infections2015Inngår i: Nature Protocols, ISSN 1754-2189, E-ISSN 1750-2799, Vol. 10, nr 8, s. 1155-1164Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Microbial infections are a global health problem, particularly as microbes are continually developing resistance to antimicrobial treatments. An effective and reliable method for testing the virulence of different microbial pathogens is therefore a useful research tool. This protocol describes how the chicken embryo can be used as a trustworthy, inexpensive, ethically desirable and quickly accessible model to assess the virulence of the human bacterial pathogen Listeria monocytogenes, which can also be extended to other microbial pathogens. We provide a step-by-step protocol and figures and videos detailing the method, including egg handling, infection strategies, pathogenicity screening and isolation of infected organs. From the start of incubation of the fertilized eggs, the protocol takes <4 weeks to complete, with the infection part taking only 3 d. We discuss the appropriate controls to use and potential adjustments needed for adapting the protocol for other microbial pathogens.

  • 36.
    Andersson, Elisabet
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    The evolutionary study of the immunoglobulin heavy chain genes of a bony fish, rainbow trout (Oncorhynchus mykiss)1995Doktoravhandling, med artikler (Annet vitenskapelig)
  • 37. Andersson, K
    et al.
    Carballeira Suarez, N
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Magnusson, K E
    Persson, C
    Stendahl, O
    Wolf-Watz, H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Fällman, M
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis.1996Inngår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 20, nr 5, s. 1057-69Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The PTPase YopH of Yersinia is essential to the ability of these bacteria to block phagocytosis. Wild-type Yersinia pseudotuberculosis, but not the yopH mutant strain, resisted phagocytosis by J774 cells. Ingestion of a yopH mutant was dependent on tyrosine kinase activity. Transcomplementation with wild-type yopH restored the anti-phagocytic effect, whereas introduction of the gene encoding the catalytically inactive yopHC403A was without effect. The PTPase inhibitor orthovanadate impaired the anti-phagocytic effect of the wild-type strain, further demonstrating the importance of bacteria-derived PTPase activity for this event. The ability to resist phagocytosis indicates that the effect of the bacterium is immediately exerted when it becomes associated with the phagocyte. Within 30 s after the onset of infection, wild-type Y. pseudotuberculosis caused a YopH-dependent dephosphorylation of phosphotyrosine proteins in J774 cells. Furthermore, interaction of the cells with phagocytosable strains led to a rapid and transient increase in tyrosine phosphorylation of paxillin and some other proteins, an event dependent on the presence of the bacterial surface-located protein invasin. Co-infection with the phagocytosable strain and the wild-type strain abolished the induction of tyrosine phosphorylation. Taken together, the present findings demonstrate an immediate YopH-mediated dephosphorylation of macrophage phosphotyrosine proteins, suggesting that this PTPase acts by preventing early phagocytosis-linked signalling in the phagocyte.

  • 38.
    Andersson, Karin
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Prefibrillar oligomeric Transthyretin mutants - amyloid conformation, toxicity and association with Serum amyloid P component2005Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Amyloidoses represent a heterogeneous group of diseases characterized by abnormal protein metabolism leading to extracellular deposition of fibrillar, proteinaceous amyloid in various tissues and organs of the body. To date more than 20 different proteins have been linked to diseases with amyloid depositions, of which Alzheimer’s disease and the prion-associated diseases are the most well known. Despite the origin of protein in the amyloid, the fibrils share some common biochemical and biophysical properties such as a diameter of 8-13 nm, a β-pleated sheet secondary structure packed in an ordered crystal-like way, Congo red and thioflavin binding with characteristic spectroscopic patterns and decoration of the fibrils with Serum amyloid P component and glycoseaminoglycans.

    The plasma protein transthyretin (TTR) is associated with familial amyloidosis with polyneuropathy (FAP) and senile systemic amyloidosis (SSA). FAP is a lethal, autosomal inherited disorder caused by point mutations in the TTR-gene. More than 80 different mutations have been associated with amyloid formation and linked to FAP. The interpretation is that amino acid replacements at different sites of the polypeptide lead to reduced stability. Mutant TTR were constructed that have a strong tendency to self-aggregate under physiological conditions. The precipitates were shown to be amyloid by staining with thioflavin T and Congo red. As the mutants were sensitive to trypsin cleavage compared to plasma TTR, we suggest that the mutants represent amyloid precursors or that they may share structural properties with intermediates on a pathway leading to amyloid deposition. Monoclonal antibodies were generated that exclusively recognize the amyloidogenic folding of TTR providing direct biochemical evidence for a structural change in amyloidogenic intermediates. Two cryptic epitopes were mapped to a domain of TTR, where most mutations associated with amyloidosis occur and is proposed to be displaced at the initial phase of amyloid formation. Amyloidogenic intermediates of TTR were shown to induce a toxic, free radical dependent, response in cultured neuroblastoma cells. Morphological studies revealed a correlation between toxicity (apoptosis) and the presence of immature amyloid suggesting that mature full-length fibrils represent an inert end stage, which might serve as a rescue mechanism.

    Serum amyloid P component (SAP) is a highly conserved plasma glycoprotein universally found associated with amyloid depositions independently of protein origin. SAP’s role in amyloid formation is contradictory since both inhibition and promotion of aggregation have been shown in the case of fibril formation from the Aβ peptide of Alzheimer’s disease. Amyloidogenic prefibrils of TTR were shown to bind SAP and no interference with aggregation was detected. SAP co-localize in patches with mutant TTR on the surface of neuroblastoma cells and prevent apoptosis induced by mutant TTR and Aβ peptide, while several other molecules known to decorate amyloid fibrils were without effect.

  • 39.
    Andersson, Karin
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Lundgren, Erik
    Inhibition of amyloid induced apoptosis - a new role for Serum amyloid P componentManuskript (Annet vitenskapelig)
  • 40.
    Andersson, Karin
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Olofsson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Holm Nielsen, Ellen
    Svehag, SvenErik
    Lundgren, Erik
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Only amyloidogenic inermediates of transthyretin induce apoptosis2002Inngår i: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 294, nr 2, s. 309-314Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In diseases like Alzheimer's disease and familial amyloidotic polyneuropathy (FAP) amyloid deposits co-localize with areas of neurodegeneration. FAP is associated with mutations of the plasma protein transthyretin (TTR). We can here show an apoptotic effect of amyloidogenic mutants of TTR on a human neuroblastoma cell line. Toxicity could be blocked by catalase indicating a free oxygen radical dependent mechanism. The toxic effect was dependent on the state of aggregation and unexpectedly mature fibrils from FAP-patients who failed to exert an apoptotic response. Morphological studies revealed a correlation between toxicity and the presence of immature amyloid. Thus, we can show that toxicity is associated with early stages of fibril formation and propose that mature full-length fibrils represent an inert end stage, which might serve as a rescue mechanism. 

  • 41. Andersson, Karin
    et al.
    Pokrzywa, M
    Dacklin, Ingrid
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Lundgren, Erik
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Inhibition of TTR aggregation-induced cell death: a new role for serum amyloid P component2013Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, nr 2Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    BACKGROUND: Serum amyloid P component (SAP) is a glycoprotein that is universally found associated with different types of amyloid deposits. It has been suggested that it stabilizes amyloid fibrils and therefore protects them from proteolytic degradation.

    METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we show that SAP binds not only to mature amyloid fibrils but also to early aggregates of amyloidogenic mutants of the plasma protein transthyretin (TTR). It does not inhibit fibril formation of TTR mutants, which spontaneously form amyloid in vitro at physiological pH. We found that SAP prevents cell death induced by mutant TTR, while several other molecules that are also known to decorate amyloid fibrils do not have such effect. Using a Drosophila model for TTR-associated amyloidosis, we found a new role for SAP as a protective factor in inhibition of TTR-induced toxicity. Overexpression of mutated TTR leads to a neurological phenotype with changes in wing posture. SAP-transgenic flies were crossed with mutated TTR-expressing flies and the results clearly confirmed a protective effect of SAP on TTR-induced phenotype, with an almost complete reduction in abnormal wing posture. Furthermore, we found in vivo that binding of SAP to mutated TTR counteracts the otherwise detrimental effects of aggregation of amyloidogenic TTR on retinal structure.

    CONCLUSIONS/SIGNIFICANCE: Together, these two approaches firmly establish the protective effect of SAP on TTR-induced cell death and degenerative phenotypes, and suggest a novel role for SAP through which the toxicity of early amyloidogenic aggregates is attenuated.

  • 42. Andersson, Karin
    et al.
    Pokrzywa, Malgorzata
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Dacklin, Ingrid
    Lundgren, Erik
    Inhibition of amyloid-induced apoptosis - a new role for serum amyloid P componentManuskript (Annet (populærvitenskap, debatt, mm))
  • 43.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Kemi.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Physical Properties of Biopolymers Assessed by Optical Tweezers: Analysis of folding and refolding of bacterial pili2008Inngår i: ChemPhysChem, ISSN 1439-4235, E-ISSN 1439-7641, Vol. 9, nr 2, s. 221-235Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Bacterial adhesion to surfaces mediated by specific adhesion organelles that promote infections, as exemplified by the pili of uropathogenic E. coli, is studied mostly at the level of cell-cell interactions and thereby reflects the averaged behavior of multiple pili. The role of pilus rod structure has therefore only been estimated from the outcome of experiments involving large numbers of organelles at the same time. It has, however, lately become clear that the biomechanical behavior of the pilus shafts play an important, albeit hitherto rather unrecognized, role in the adhesion process. For example, it has been observed that shafts from two different strains, even though they are similar in structure, result in large differences in the ability of the bacteria to adhere to their host tissue. However, in order to identify all properties of pilus structures that are of importance in the adhesion process, the biomechanical properties of pili must be assessed at the single-molecule level. Due to the low range of forces of these structures, until recently it was not possible to obtain such information. However, with the development of force-measuring optical tweezers (FMOT) with force resolution in the low piconewton range, it has lately become possible to assess forces mediated by individual pili on single living bacteria in real time. FMOT allows for a more or less detailed mapping of the biomechanical properties of individual pilus shafts, in particular those that are associated with their elongation and contraction under stress. This Mi- nireview presents the FMOT technique, the biological model system, and results from assessment of the biomechanical properties of bacterial pili. The information retrieved is also compared with that obtained by atomic force microscopy.

  • 44.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Characterization of the mechanical properties of fimbrial structures by optical tweezers2006Inngår i: Proceedings of the VIII. Annual Linz Winter Workshop, 2006, s. 19-22Konferansepaper (Fagfellevurdert)
  • 45.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Optical tweezers for single molecule force spectroscopy on bacterial adhesion organelles2006Inngår i: Proceedings of SPIE vol. 6326: Optical Trapping and Optical Micromanipulation III, 2006, s. 632620-Konferansepaper (Fagfellevurdert)
  • 46.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Björnham, Oscar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Bullitt, Esther
    Department of Physiology and Biophysics, Boston University School of Medicine, 700 Albany St., Boston MA, USA.
    Svantesson, Mats
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Differentiating pili expressed by enterotoxigenic and uropathogenic escherichia coli with optical tweezersManuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    Enterotoxigenic Escherichia coli (ETEC) attach to the host epithelium in the intestinal tract via specific adhesion organelles expressed on the cell membrane. We investigate, by force measuring optical tweezers, the intrinsic biomechanical properties and kinetics of the colonization factor I (CFA/I) at a single pilus level. The measurements indicate that CFA/I pili are helix-like structures that can both be unraveled to a linearized polymer by applying a small external force, 7.5 ± 1.5 pN but also regain its helix-like structure when the applied force is reduced. The data confirm that layer-to-layer interactions, that stabilize the helix-like structure, are much weaker than the interactions found in pili expressed by Uropathogenic Escherichia coli (UPEC). It is also found, contrary to previous results assessed from UPEC pili, that the CFA/I undergo in some cases a sudden structural change, a force drop of ~2 pN, when unraveled from the helix-like configuration to an open helical linearized fiber. These data suggest a rotation of the filament about its helical axis, followed by a region in which the force required to extend the pili further increases rapidly. During this final elongation to a super-extended fiber, CFA/I pili do not show any structural transition as seen for UPEC pili. In addition, the CFA/I pili show faster kinetics than UPEC pili that allows for a larger dynamic regime of in vivo shear forces. The unfolding and refolding possibility points toward an organelle that has evolved to allow for dynamic damping of external forces and handling of harsh motion without breaking.

  • 47.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    A sticky chain model of the elongation and unfolding of escherichia coli P pili under stress2006Inngår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 90, nr 5, s. 1521-1534Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A model of the elongation of P pili expressed by uropathogenic Escherichia coli exposed to stress is presented. The model is based upon the sticky chain concept, which is based upon Hooke’s law for elongation of the layer-to-layer and head-to-tail bonds between neighboring units in the PapA rod and a kinetic description of the opening and closing of bonds, described by rate equations and an energy landscape model. It provides an accurate description of the elongation behavior of P pili under stress and supports a hypothesis that the PapA rod shows all three basic stereotypes of elongation/unfolding: elongation of bonds in parallel, the zipper mode of unfolding, and elongation and unfolding of bonds in series. The two first elongation regions are dominated by a cooperative bond opening, in which each bond is influenced by its neighbor, whereas the third region can be described by individual bond opening, in which the bonds open and close randomly. A methodology for a swift extraction of model parameters from force-versus-elongation measurements performed under equilibrium conditions is derived. Entities such as the free energy, the stiffness, the elastic elongation, the opening length of the various bonds, and the number of PapA units in the rod are determined.

  • 48.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Dynamic Force Spectroscopy of E. coli P Pili2006Inngår i: Biophysical Journal, ISSN 0006-3495, E-ISSN 1542-0086, Vol. 91, nr 7, s. 2717-2725Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface organelles (so-called pili) expressed on the bacterial membrane mediate the adhesion of Escherichia coli causing urinary tract infection. These pili possess some extraordinary elongation properties that are assumed to allow a close bacterium-to-host contact even in the presence of shear forces caused by urine flow. The elongation properties of P pili have therefore been assessed for low elongation speeds (steady-state conditions). This work reports on the behavior of P pili probed by dynamic force spectroscopy. A kinetic model for the unfolding of a helixlike chain structure is derived and verified. It is shown that the unfolding of the quaternary structure of the PapA rod takes place at a constant force that is almost independent of elongation speed for slow elongations (up to ~0.4 μm/s), whereas it shows a dynamic response with a logarithmic dependence for fast elongations. The results provide information about the energy landscape and reaction rates. The bond length and thermal bond opening and closure rates for the layer-to-layer bond have been assessed to ~0.76 nm, ~0.8 Hz, and ~8 GHz, respectively. The results also support a previously constructed sticky-chain model for elongation of the PapA rod that until now had been experimentally verified only under steady-state conditions.

  • 49.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Inngår i: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV / [ed] Farkas, DL, Nicolau, DV, Leif, RC, 2006, Vol. 6088, s. 608810-Konferansepaper (Fagfellevurdert)
    Abstract [en]

    A force-measuring optical tweezers instrumentation and long time measurements of the elongation and retraction of bacterial fimbriae from Uropathogenic E. coli (UPEC) under strain are presented. The instrumentation is presented in some detail. Special emphasis is given to measures taken to reduce the influence of noise and drifts in the system and from the surrounding, which makes long term force measurements possible. Individual P pili from UPEC bacteria were used as a biological model system for repetitive unfolding and refolding cycles of bacterial fimbriae under equilibrium conditions. P pili have evolved into a three-dimensional helix-like structure, the PapA rod, that can be successively and significantly elongated and/or unfolded when exposed to external forces. The instrumentation is used for characterization of the force-vs.-elongation response of the PapA rod of individual P pili, with emphasis on the long time stability of the forced unfolding and refolding of the helical structure of the PapA rod. The results show that the PapA rod is capable of withstanding extensive strain, leading to a complete unfolding of the helical structure, repetitive times during the life cycle of a bacterium without any noticeable alteration of the mechanical properties of the P pili. This function is believed to be importance for UPEC bacteria in vivo since it provides a close contact to a host cell (which is an initial step of invasion) despite urine cleaning attempts.

  • 50.
    Andersson, Magnus
    et al.
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Fällman, Erik
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinsk fakultet, Molekylärbiologi (Medicinska fakulteten).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskaplig fakultet, Fysik.
    Force measuring optical tweezers system for long time measurements of P pili stability2006Inngår i: Proceedings of the SPIE vol. 6088: Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues IV, 2006, s. 608810-Konferansepaper (Fagfellevurdert)
1234567 1 - 50 of 1058
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf