umu.sePublikasjoner
Endre søk
Begrens søket
1234567 101 - 150 of 1013
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 101.
    Buren, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Ötvös, Krisztina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Use of the foot-and-mouth disease virus 2A peptide co-expression system to study intracellular protein trafficking in arabidopsis2012Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, nr 12, s. e51973-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: A tool for stoichiometric co-expression of effector and target proteins to study intracellular protein trafficking processes has been provided by the so called 2A peptide technology. In this system, the 16-20 amino acid 2A peptide from RNA viruses allows synthesis of multiple gene products from single transcripts. However, so far the use of the 2A technology in plant systems has been limited.

    Methodology/Principal Findings: The aim of this work was to assess the suitability of the 2A peptide technology to study the effects exerted by dominant mutant forms of three small GTPase proteins, RABD2a, SAR1, and ARF1 on intracellular protein trafficking in plant cells. Special emphasis was given to CAH1 protein from Arabidopsis, which is trafficking to the chloroplast via a poorly characterized endoplasmic reticulum-to-Golgi pathway. Dominant negative mutants for these GTPases were co-expressed with fluorescent marker proteins as polyproteins separated by a 20 residue self-cleaving 2A peptide. Cleavage efficiency analysis of the generated polyproteins showed that functionality of the 2A peptide was influenced by several factors. This enabled us to design constructs with greatly increased cleavage efficiency compared to previous studies. The dominant negative GTPase variants resulting from cleavage of these 2A peptide constructs were found to be stable and active, and were successfully used to study the inhibitory effect on trafficking of the N-glycosylated CAH1 protein through the endomembrane system.

    Conclusions/Significance: We demonstrate that the 2A peptide is a suitable tool when studying plant intracellular protein trafficking and that transient protoplast and in planta expression of mutant forms of SAR1 and RABD2a disrupts CAH1 trafficking. Similarly, expression of dominant ARF1 mutants also caused inhibition of CAH1 trafficking to a different extent. These results indicate that early trafficking of the plastid glycoprotein CAH1 depends on canonical vesicular transport mechanisms operating between the endoplasmic reticulum and Golgi apparatus.

  • 102.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Blanco-Rivero, Amaya
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Ortega-Villasante, Cristina
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Samuelsson, Göran
    Villarejo, Arsenio
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Specific suppression of the chloroplast N-glycosylated carbonic anhydrase (CAH1) has major impact on the photosynthetic performance of Arabidopsis thalianaManuskript (preprint) (Annet vitenskapelig)
  • 103.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Blanco-Rivero, Amaya
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Martínez-Bernardini, Andrea
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    N-glycosylation is required for trafficking and activity of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thalianaManuskript (preprint) (Annet vitenskapelig)
  • 104.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Blanco-Rivero, Amaya
    Martínez-Bernardini, Andrea
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Shutova, Tatiana
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Shevela, Dmitriy
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Importance of post-translational modifications for functionality of a chloroplast-localized carbonic anhydrase (CAH1) in Arabidopsis thaliana2011Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, nr 6, s. e21021-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background

    The Arabidopsis CAH1 alpha-type carbonic anhydrase is one of the few plant proteins known to be targeted to the chloroplast through the secretory pathway. CAH1 is post-translationally modified at several residues by the attachment of N-glycans, resulting in a mature protein harbouring complex-type glycans. The reason of why trafficking through this non-canonical pathway is beneficial for certain chloroplast resident proteins is not yet known. Therefore, to elucidate the significance of glycosylation in trafficking and the effect of glycosylation on the stability and function of the protein, epitope-labelled wild type and mutated versions of CAH1 were expressed in plant cells.

    Methodology/Principal Findings

    Transient expression of mutant CAH1 with disrupted glycosylation sites showed that the protein harbours four, or in certain cases five, N-glycans. While the wild type protein trafficked through the secretory pathway to the chloroplast, the non-glycosylated protein formed aggregates and associated with the ER chaperone BiP, indicating that glycosylation of CAH1 facilitates folding and ER-export. Using cysteine mutants we also assessed the role of disulphide bridge formation in the folding and stability of CAH1. We found that a disulphide bridge between cysteines at positions 27 and 191 in the mature protein was required for correct folding of the protein. Using a mass spectrometric approach we were able to measure the enzymatic activity of CAH1 protein. Under circumstances where protein N-glycosylation is blocked in vivo, the activity of CAH1 is completely inhibited.

    Conclusions/Significance

    We show for the first time the importance of post-translational modifications such as N-glycosylation and intramolecular disulphide bridge formation in folding and trafficking of a protein from the secretory pathway to the chloroplast in higher plants. Requirements for these post-translational modifications for a fully functional native protein explain the need for an alternative route to the chloroplast.

  • 105.
    Burén, Stefan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Ortega-Villasante, Cristina
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Samuelsson, Göran
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Villarejo, Arsenio
    Department of Biology, Universidad Autónoma de Madrid, Spain.
    Optimization of the 2A peptide coexpression system to study trafficking of the plastid N-glycoprotein CAH1 in Arabidopsis thalianaManuskript (preprint) (Annet vitenskapelig)
  • 106. Bykova, Natalia V
    et al.
    Keerberg, Olav
    Pärnik, Tiit
    Bauwe, Hermann
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Interaction between photorespiration and respiration in transgenic potato plants with antisense reduction in glycine decarboxylase.2005Inngår i: Planta, ISSN 0032-0935, Vol. 222, nr 1, s. 130-40Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Abstract Potato (Solanum tuberosum L. cv. Désirée) plants with an antisense reduction in the P-protein of the glycine decarboxylase complex (GDC) were used to study the interaction between respiration and photorespiration. Mitochondria isolated from transgenic plants had a decreased capacity for glycine oxidation and glycine accumulated in the leaves. Malate consumption increased in leaves of GDC deficient plants and the capacity for malate and NADH oxidation increased in isolated mitochondria. A lower level of alternative oxidase protein and decreased partitioning of electrons to the alternative pathway was found in these plants. The adenylate status was altered in protoplasts from transgenic plants, most notably the chloroplastic ATP/ADP ratio increased. The lower capacity for photorespiration in leaves of GDC deficient plants was compensated for by increased respiratory decarboxylations in the light. This is interpreted as a decreased light suppression of the tricarboxylic acid cycle in GDC deficient plants in comparison to wild-type plants. The results support the view that respiratory decarboxylations in the light are restricted at the level of the pyruvate dehydrogenase complex and/or isocitrate dehydrogenase and that this effect is likely to be mediated by mitochondrial photorespiratory products.

  • 107. Bykova, Natalia V.
    et al.
    Møller, Ian M.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Igamberdiev, Abir U.
    The function of glycine decarboxylase complex is optimized to maintain high photorespiratory flux via buffering of its reaction products2014Inngår i: Mitochondrion (Amsterdam. Print), ISSN 1567-7249, E-ISSN 1872-8278, Vol. 19, s. 357-364Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Oxidation of glycine in photorespiratory pathway is the major flux through mitochondria of C3 plants in the light. It sustains increased intramitochondrial concentrations of NADH and NADPH, which are required to engage the internal rotenone-insensitive NAD(P)H dehydrogenases and the alternative oxidase. We discuss here possible mechanisms of high photorespiratory flux maintenance in mitochondria and suggest that it is fulfilled under conditions where the concentrations of glycine decarboxylase reaction products NADH and CO2 achieve an equilibrium provided by malate dehydrogenase and carbonic anhydrase, respectively. This results in the removal of these products from the glycine decarboxylase multienzyme active sites and in the maintenance of their concentrations at levels sufficiently low to prevent substrate inhibition of the reaction. 

  • 108. Bykova, Natalia V
    et al.
    Rasmusson, Allan G.
    Igamberdiev, Abir U
    Department of Plant Science, Faculty Agriculture and Food Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Møller, Ian M.
    Two separate transhydrogenase activities are present in plant mitochondria1999Inngår i: Biochemical and Biophysical Research Communications - BBRC, ISSN 0006-291X, E-ISSN 1090-2104, Vol. 265, nr 1, s. 106-111Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Inside-out submitochondrial particles from both potato tubers and pea leaves catalyze the transfer of hydride equivalents from NADPH to NAD(+) as monitored with a substrate-regenerating system. The NAD(+) analogue acetylpyridine adenine dinucleotide is also reduced by NADPH and incomplete inhibition by the complex I inhibitor diphenyleneiodonium (DPI) indicates that hive enzymes are involved in this reaction. Gel-filtration chromatography of solubilized mitochondrial membrane complexes confirms that the DPI-sensitive TH activity is due to NADH-ubiquinone oxidoreductase (EC 1,6,5,3, complex I), whereas the DPI-insensitive activity is due to a separate enzyme eluting around 220 kDa. The DPI-insensitive TH activity is specific for the 4B proton on NADH, whereas there is no indication of a 4A-specific activity characteristic of a mammalian-type energy-linked TH. The DPI-insensitive TH may be similar to the soluble type of transhydrogenase found in, e.g., Pseudomonas. The presence of non-energy-linked TR: activities directly coupling the matrix NAD(H) and NADP(H) pools will have important consequences for the regulation of NADP-linked processes in plant mitochondria. (C) 1999 Academic Press.

  • 109.
    Bylesjö, Max
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Eriksson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sjödin, Andreas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Moritz, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Orthogonal projections to latent structures as a strategy for microarray data normalization2007Inngår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 8, nr 207Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background

    During generation of microarray data, various forms of systematic biases are frequently introduced which limits accuracy and precision of the results. In order to properly estimate biological effects, these biases must be identified and discarded.

    Results

    We introduce a normalization strategy for multi-channel microarray data based on orthogonal projections to latent structures (OPLS); a multivariate regression method. The effect of applying the normalization methodology on single-channel Affymetrix data as well as dual-channel cDNA data is illustrated. We provide a parallel comparison to a wide range of commonly employed normalization methods with diverse properties and strengths based on sensitivity and specificity from external (spike-in) controls. On the illustrated data sets, the OPLS normalization strategy exhibits leading average true negative and true positive rates in comparison to other evaluated methods.

    Conclusions

    The OPLS methodology identifies joint variation within biological samples to enable the removal of sources of variation that are non-correlated (orthogonal) to the within-sample variation. This ensures that structured variation related to the underlying biological samples is separated from the remaining, bias-related sources of systematic variation. As a consequence, the methodology does not require any explicit knowledge regarding the presence or characteristics of certain biases. Furthermore, there is no underlying assumption that the majority of elements should be non-differentially expressed, making it applicable to specialized boutique arrays.

  • 110.
    Bylesjö, Max
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Eriksson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sjödin, Andreas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sjöström, Michael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Antti, Henrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    MASQOT: a method for cDNA microarray spot quality control.2005Inngår i: BMC Bioinformatics, ISSN 1471-2105, E-ISSN 1471-2105, Vol. 6, s. 250-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background

    cDNA microarray technology has emerged as a major player in the parallel detection of biomolecules, but still suffers from fundamental technical problems. Identifying and removing unreliable data is crucial to prevent the risk of receiving illusive analysis results. Visual assessment of spot quality is still a common procedure, despite the time-consuming work of manually inspecting spots in the range of hundreds of thousands or more.

    Results

    A novel methodology for cDNA microarray spot quality control is outlined. Multivariate discriminant analysis was used to assess spot quality based on existing and novel descriptors. The presented methodology displays high reproducibility and was found superior in identifying unreliable data compared to other evaluated methodologies.

    Conclusion

    The proposed methodology for cDNA microarray spot quality control generates non-discrete values of spot quality which can be utilized as weights in subsequent analysis procedures as well as to discard spots of undesired quality using the suggested threshold values. The MASQOT approach provides a consistent assessment of spot quality and can be considered an alternative to the labor-intensive manual quality assessment process.

  • 111.
    Bylesjö, Max
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Nilsson, Robert
    Umeå universitet, Medicinska fakulteten, Umeå Life Science Centre (ULSC).
    Srivastava, Vaibhav
    Grönlund, Andreas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Johansson, Annika I
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Karlsson, Jan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Moritz, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Wingsle, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Integrated analysis of transcript, protein and metabolite data to study lignin biosynthesis in hybrid aspen2009Inngår i: Journal of Proteome Research, ISSN 1535-3893, E-ISSN 1535-3907, Vol. 8, nr 1, s. 199-210Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Tree biotechnology will soon reach a mature state where it will influence the overall supply of fiber, energy and wood products. We are now ready to make the transition from identifying candidate genes, controlling important biological processes, to discovering the detailed molecular function of these genes on a broader, more holistic, systems biology level. In this paper, a strategy is outlined for informative data generation and integrated modeling of systematic changes in transcript, protein and metabolite profiles measured from hybrid aspen samples. The aim is to study characteristics of common changes in relation to genotype-specific perturbations affecting the lignin biosynthesis and growth. We show that a considerable part of the systematic effects in the system can be tracked across all platforms and that the approach has a high potential value in functional characterization of candidate genes.

  • 112.
    Bylesjö, Max
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Segura, Vincent
    Soolanayakanahally, Raju Y
    Rae, Anne M
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Street, Nathaniel R
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    LAMINA: a tool for rapid quantification of leaf size and shape parameters2008Inngår i: BMC Plant Biology, ISSN 1471-2229, Vol. 8, nr 82, s. 1-9Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background

    An increased understanding of leaf area development is important in a number of fields: in food and non-food crops, for example short rotation forestry as a biofuels feedstock, leaf area is intricately linked to biomass productivity; in paleontology leaf shape characteristics are used to reconstruct paleoclimate history. Such fields require measurement of large collections of leaves, with resulting conclusions being highly influenced by the accuracy of the phenotypic measurement process.

    Results

    We have developed LAMINA (Leaf shApe deterMINAtion), a new tool for the automated analysis of images of leaves. LAMINA has been designed to provide classical indicators of leaf shape (blade dimensions) and size (area), which are typically required for correlation analysis to biomass productivity, as well as measures that indicate asymmetry in leaf shape, leaf serration traits, and measures of herbivory damage (missing leaf area). In order to allow Principal Component Analysis (PCA) to be performed, the location of a chosen number of equally spaced boundary coordinates can optionally be returned.

    Conclusion

    We demonstrate the use of the software on a set of 500 scanned images, each containing multiple leaves, collected from a common garden experiment containing 116 clones of Populus tremula (European trembling aspen) that are being used for association mapping, as well as examples of leaves from other species. We show that the software provides an efficient and accurate means of analysing leaf area in large datasets in an automated or semi-automated work flow.

  • 113.
    Bylesjö, Max
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sjödin, Andreas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Eriksson, Daniel
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Antti, Henrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Moritz, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Trygg, Johan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    MASQOT-GUI: spot quality assessment for the two-channel microarray platform2006Inngår i: Bioinformatics, ISSN 1367-4803, E-ISSN 1367-4811, Vol. 22, nr 20, s. 2554-2555Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    MASQOT-GUI provides an open-source, platform-independent software pipeline for two-channel microarray spot quality control. This includes gridding, segmentation, quantification, quality assessment and data visualization. It hosts a set of independent applications, with interactions between the tools as well as import and export support for external software. The implementation of automated multivariate quality control assessment, which is a unique feature of MASQOT-GUI, is based on the previously documented and evaluated MASQOT methodology. Further abilities of the application are outlined and illustrated. AVAILABILITY: MASQOT-GUI is Java-based and licensed under the GNU LGPL. Source code and installation files are available for download at http://masqot-gui.sourceforge.net/

  • 114.
    Bäck, Siri
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    No Lhcb1 or Lhcb2 isoforms alone has a significant effect on state transitions2012Independent thesis Basic level (degree of Bachelor), 10 poäng / 15 hpOppgave
  • 115.
    Böhlenius, Henrik
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Huang, Tao
    Charbonnel-Campaa, Laurence
    Brunner, Amy M
    Jansson, Stefan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Strauss, Steven H
    Nilsson, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees.2006Inngår i: Science, ISSN 1095-9203, Vol. 312, nr 5776, s. 1040-3Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Forest trees display a perennial growth behavior characterized by a multiple-year delay in flowering and, in temperate regions, an annual cycling between growth and dormancy. We show here that the CO/FT regulatory module, which controls flowering time in response to variations in daylength in annual plants, controls flowering in aspen trees. Unexpectedly, however, it also controls the short-day–induced growth cessation and bud set occurring in the fall. This regulatory mechanism can explain the ecogenetic variation in a highly adaptive trait: the critical daylength for growth cessation displayed by aspen trees sampled across a latitudinal gradient spanning northern Europe.

  • 116. Caballero-Pérez, Juan
    et al.
    Espinal-Centeno, Annie
    Falcon, Francisco
    García-Ortega, Luis F.
    Curiel-Quesada, Everardo
    Cruz-Hernández, Andrés
    Bako, Laszlo
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Chen, Xuemei
    Martínez, Octavio
    Alberto Arteaga-Vázquez, Mario
    Herrera-Estrella, Luis
    Cruz-Ramírez, Alfredo
    Transcriptional landscapes of Axolotl (Ambystoma mexicanum)2018Inngår i: Developmental Biology, ISSN 0012-1606, E-ISSN 1095-564X, Vol. 433, nr 2, s. 227-239Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The axolotl (Ambystoma mexicanum) is the vertebrate model system with the highest regeneration capacity. Experimental tools established over the past 100 years have been fundamental to start unraveling the cellular and molecular basis of tissue and limb regeneration. In the absence of a reference genome for the Axolotl, transcriptomic analysis become fundamental to understand the genetic basis of regeneration.

    Here we present one of the most diverse transcriptomic data sets for Axolotl by profiling coding and non coding RNAs from diverse tissues. We reconstructed a population of 115,906 putative protein coding mRNAs as full ORFs (including isoforms). We also identified 352 conserved miRNAs and 297 novel putative mature miRNAs.

    Systematic enrichment analysis of gene expression allowed us to identify tissue-specific protein-coding transcripts. We also found putative novel and conserved microRNAs which potentially target mRNAs which are reported as important disease candidates in heart and liver.

  • 117.
    Cain, Peter
    et al.
    Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK .
    Hall, Michael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Schröder, Wolfgang
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kieselbach, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Robinson, Colin
    Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK .
    A novel extended family of stromal thioredoxins2009Inngår i: Plant Molecular Biology, ISSN 0167-4412, E-ISSN 1573-5028, Vol. 70, nr 3, s. 273-281Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thioredoxins play key regulatory roles in chloroplasts by linking photosynthetic light reactions to a series of plastid functions. In addition to the established groups of thioredoxins, f, m, x, and y, novel plant thioredoxins were also considered to include WCRKC motif proteins, CDSP32, the APR proteins, the lilium proteins and HCF164. Despite their important roles, the subcellular locations of many novel thioredoxins has remained unknown. Here, we report a study of their subcellular location using the cDNA clone resources of TAIR. In addition to filling all gaps in the subcellular map of the established chloroplast thioredoxins f, m, x and y, we show that the members of the WCRKC family are targeted to the stroma and provide evidence for a stromal location of the lilium proteins. The combined data from this and related studies indicate a consistent stromal location of the known Arabidopsis chloroplast thioredoxins except for thylakoid-bound HCF164.

  • 118. Campbell, Catherine
    et al.
    Atkinson, Lindsey
    Zaragoza-Castells, Joana
    Lundmark, Maria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Atkin, Owen
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Acclimation of photosynthesis and respiration in response to change in growth temperature is asynchronous across plant functional groups2007Inngår i: New Phytologist, ISSN 0028-646XArtikkel i tidsskrift (Fagfellevurdert)
  • 119. Campbell, Catherine
    et al.
    Atkinson, Lindsey
    Zaragoza-Castells, Joana
    Lundmark, Maria
    Atkin, Owen
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group.2007Inngår i: New Phytologist, ISSN 0028-646X, Vol. 176, nr 2, s. 375-89Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    • Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28°C).

    • When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups.

    • Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle.

    • Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.

  • 120. Campbell, D
    et al.
    Bruce, D
    Carpenter, C
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Two forms of the photosystem II D1 protein alter energy dissipation and state transitions in the cyanobacterium Synechococcus sp PCC 79421996Inngår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 47, nr 2, s. 131-144Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Synechococcus sp. PCC 7942 (Anacystis nidulans R2) contains two forms of the Photosystem II reaction centre protein D1, which differ in 25 of 360 amino acids. D1:1 predominates under low light hut is transiently replaced by D1:2 upon shifts to higher light. Mutant cells containing only D1:1 have lower photochemical energy capture efficiency and decreased resistance to photoinhibition, compared to cells containing D1:2. We show that when dark-adapted or under low to moderate light, cells with D1:1 have higher non-photochemical quenching of PS II fluorescence (higher q(N)) than do cells with D1:2. This is reflected in the 77 K chlorophyll emission spectra, with lower Photosystem II fluorescence at 697-698 nm in cells containing D1:1 than in cells with D1:2. This difference in quenching of Photosystem II fluorescence occurs upon excitation of both chlorophyll at 435 nm and phycobilisomes at 570 nm. Measurement of time-resolved room temperature fluorescence shows that Photosystem II fluorescence related to charge stabilization is quenched more rapidly in cells containing D1:1 than in those with D1:2. Cells containing D1:1 appear generally shifted towards State II, with PS II down-regulated, while cells with D1:2 tend towards State I. In these cyanobacteria electron transport away from PS II remains non-saturated even under photoinhibitory levels of light. Therefore, the higher activity of D1:2 Photosystem II centres may allow more rapid photochemical dissipation of excess energy into the electron transport chain. D1:1 confers capacity for extreme State II which may be of benefit under low and variable light.

  • 121. Campbell, D
    et al.
    Clarke, A K
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oxygen-dependent electron flow influences photosystem II function and psbA gene expression in the cyanobacterium Synechococcus sp PCC 79421999Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 105, nr 4, s. 746-755Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    During acclimated growth in Synechococcus sp, PCC 7942 a substantial proportion of the electrons extracted from mater by photosystem II ultimately flow back to oxygen, This flow increases rapidly under high light, which allows Synechococcus to maintain photosystem II centers largely open, even under excessive excitation, The electron flow to oxygen with increasing light accounts for the progressive discrepancy between the light response curve of measured oxygen evolution, and the light response curve of photosystem II activity estimated from fluorescence measures. In cells under anoxia this flexible electron sink is lost and photosystem II centers suffer partial closure at the growth light intensity, with closure becoming more severe under excess light. As predicted from earlier work this PSII closure results in rapid loss of psbAI message, encoding the D1:1 protein of PSII, and induction of psbAII/AIII encoding the alternate D1:2 protein. The changes in the mRNA pool are not, however, reflected at the protein level, and D1:1 remains in the thylakoid membranes. There is no accumulation of D1:2, despite some continued synthesis of other proteins. PSII closure, therefore, results in repression of psbAI and induction psbAII/AIII expression, but D1:1/D1:2 exchange is blocked by anoxia, downstream from transcription. D1:1 protein and PSII activity are quite stable under anoxia and moderate illumination, Nevertheless, upon recovery under oxygenic conditions, the existing D1:1 is lost from the membranes, resulting in a transient drop in PSII activity. This suggests that under normal conditions the cells use oxygen to facilitate preemptive turnover of D1 proteins.

  • 122. Campbell, D
    et al.
    Eriksson, Mats-Jerry
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Clarke, A K
    A cyanobacterium resists UV-B by exchanging Photosystem II D1 proteins.1997Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 114, nr 3, s. 30004-30004Artikkel i tidsskrift (Fagfellevurdert)
  • 123. Campbell, D
    et al.
    Eriksson, Mats-Jerry
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Clarke, A K
    The cyanobacterium Synechococcus resists UV-B by exchanging photosystem II reaction-center D1 proteins1998Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 95, nr 1, s. 364-369Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Current ambient UV-B levels can significantly depress productivity in aquatic habitats, largely because UV-B inhibits several steps of photosynthesis, including the photooxidation of water catalyzed by photosystem II, We show that upon UV-B exposure the cyanobacterium Synechococcus sp, PCC 7942 rapidly changes the expression of a family of three psbA genes encoding photosystem II D1 proteins, In wild-type cells the psbAI gene is expressed constitutively, but strong accumulations of psbAII and psbAIII transcripts are induced within 15 min of moderate UV-B exposure (0.4 W/m(2)), This transcriptional response causes an exchange of two distinct photosystem II D1 proteins, D1:1 is encoded by psbAI, but on UV-B exposure, it is largely replaced by the alternate D1:2 form, encoded by both psbAII and psbAIII, The total content of D1 and other photosystem II reaction center protein, D2, remained unchanged throughout the UV exposure, as did the content and composition of the phycobilisome, Wild-type cells suffered only slight transient inhibition of photosystem II function under UV-B exposure, In marked contrast, under the same UV-B treatment, a mutant strain expressing only psbAI suffered severe (40%) and sustained inhibition of photosystem II function, Another mutant strain with constitutive expression of psbAII and psbAIII was almost completely resistant to the UV-B treatment, showing no inhibition of photosystem II function and only a slight drop in electron transport, In Synechococcus the rapid exchange of alternate D1 forms, therefore, accounts for much of the cellular resistance to UV-B inhibition of photosystem II activity and photosynthetic electron transport, This molecular plasticity may be an important element in community-level responses to UV-B, where susceptibility to UV-B inhibition of photosynthesis changes diurnally.

  • 124. Campbell, D
    et al.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Clarke, A K
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation1998Inngår i: Microbiology and molecular biology reviews, ISSN 1092-2172, E-ISSN 1098-5557, Vol. 62, nr 3, s. 667-+Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Cyanobacteria are ecologically important photosynthetic prokaryotes that also serve as popular model organisms for studies of photosynthesis and gene regulation. Both molecular and ecological studies of cyanobacteria benefit from real-time information on photosynthesis and acclimation. Monitoring in vivo chlorophyll fluorescence can provide noninvasive measures of photosynthetic physiology in a wide range of cyanobacteria and cyanolichens and requires only small samples. Cyanobacterial fluorescence patterns are distinct from those of plants, because of key structural and functional properties of cyanobacteria. These include significant fluorescence emission from the light-harvesting phycobiliproteins; large and rapid changes in fluorescence yield (state transitions) which depend on metabolic and environmental conditions; and flexible, overlapping respiratory and photosynthetic electron transport chains. The fluorescence parameters F-V/F-M. F-V'/F-M', q(p),q(N), NPQ, and phi PS II were originally developed to extract information from the fluorescence signals of higher plants. In this review, we consider how the special properties of cyanobacteria can be accommodated and used to extract biologically useful information from cyanobacterial in vivo chlorophyll fluorescence signals. We describe how the pattern of fluorescence yield versus light intensity can be used to predict the acclimated light level for a cyanobacterial population, giving information valuable for both laboratory and field studies of acclimation processes. The size of the change in fluorescence yield during dark-to-light transitions can provide information on respiration and the iron status of the cyanobacteria. Finally, fluorescence parameters cart be used to estimate the electron transport rate at the acclimated growth light intensity.

  • 125. Campbell, D
    et al.
    OQUIST, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Predicting light acclimation in cyanobacteria from nonphotochemical quenching of photosystem II fluorescence, which reflects state transitions in these organisms1996Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 111, nr 4, s. 1293-1298Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An important factor in photosynthetic ecophysiology is the light regime that a photobiont is acclimated to exploit. In a wide range of cyanobacteria and cyano-lichens, the easily measured fluorescence parameters, coefficient of nonphotochemical quenching of photosystem II variable fluorescence (q(N)) and nonphotochemical quenching, decline to a minimum near the acclimated growth light intensity. This characteristic pattern predicts the integrated light regime to which populations are acclimated, information that is particularly useful for cyanobacteria or cyano-lichens from habitats with highly variable light intensities. q(N) reflects processes that compete with photosystem II photochemistry for absorbed excitation energy. In cyanobacteria, we find no evidence for energy-dependent quenching mechanisms, which are the predominant components of q(N) in higher plants. Instead, in cyanobacteria, q(N) correlates closely with the excitation flow from the phycobilisome to photosystem I, indicating that q(N) reflects the state transition mechanism for equilibration of excitation from the phycobilisome to the two photosystems.

  • 126. CAMPBELL, D
    et al.
    ZHOU, GQ
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    CLARKE, AK
    ELECTRON-TRANSPORT REGULATES EXCHANGE OF 2 FORMS OF PHOTOSYSTEM-II D1 PROTEIN IN THE CYANOBACTERIUM SYNECHOCOCCUS1995Inngår i: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 14, nr 22, s. 5457-5466Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Synechococcus sp, PCC 7942 modulates photosynthetic function by transiently replacing the constitutive D1 photosystem II protein, D1:1, with an alternate form, D1:2, to help counteract photoinhibition under excess light, We show that a temperature drop from 37 to 25 degrees C also drives D1:1/D1:2 exchange under constant, moderate light, Chilling or light-induced D1 exchange results from rapid loss of psbAI message coding for D1:1 and accumulation of psbAII and psbAIII messages coding for D1:2, During chilling, a large pool of a novel form, D1:2*, transiently accumulates, distinguishable from normal D1 by an increase in apparent molecular mass, D1:* is not phosphorylated and is probably a functionally inactive, incompletely processed precursor, After acclimation to 25 degrees C, D1:2* disappears and D1:1 again predominates, although substantial D1:2 remains, Partial inhibition of electron transport under constant, moderate light also triggers the D1 exchange process, These treatments all increase excitation pressure on photosystem II relative to electron transport, Therefore, information from photosynthetic electron transport regulates D1 exchange without any requirement for a change in light intensity or quality, possibly via a redox sensing mechanism proximal to photosystem II.

  • 127. Capovilla, Giovanna
    et al.
    Delhomme, Nicolas
    Collani, Silvio
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany.
    Shutava, Iryna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Bezrukov, Ilja
    Symeonidi, Efthymia
    Amorim, Marcella de Francisco
    Laubinger, Sascha
    Schmid, Markus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Max Planck Institute for Developmental Biology, Department of Molecular Biology, Tübingen, Germany.
    PORCUPINE regulates development in response to temperature through alternative splicing2018Inngår i: Nature plants, ISSN 2055-026X, Vol. 4, nr 8, s. 534-539Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Recent findings suggest that alternative splicing has a critical role in controlling the responses of plants to temperature variations. However, alternative splicing factors in plants are largely uncharacterized. Here we establish the putative splice regulator, PORCUPINE (PCP), as temperature-specific regulator of development in Arabidopsis thaliana. Our findings point to the misregulation of WUSCHEL and CLAVATA3 as the possible cause for the meristem defects affecting the pcp-1 loss-of-function mutants at low temperatures.

  • 128. Capovilla, Giovanna
    et al.
    Pajoro, Alice
    Immink, Richard GH
    Schmid, Markus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72074 Tübingen, Germany.
    Role of alternative pre-mRNA splicing in temperature signaling2015Inngår i: Current opinion in plant biology, ISSN 1369-5266, E-ISSN 1879-0356, Vol. 27, s. 97-103Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Developmental plasticity enables plants to respond rapidly to changing environmental conditions, such as temperature fluctuations. Understanding how plants measure temperature and integrate this information into developmental programs at the molecular level will be essential to breed thermo-tolerant crop varieties. Recent studies identified alternative splicing (AS) as a possible 'molecular thermometer', allowing plants to quickly adjust the abundance of functional transcripts to environmental perturbations. In this review, recent advances regarding the effects of temperature-responsive AS on plant development will be discussed, with emphasis on the circadian clock and flowering time control. The challenge for the near future will be to understand the molecular mechanisms by which temperature can influence AS regulation.

  • 129. Capovilla, Giovanna
    et al.
    Symeonidi, Efthymia
    Wu, Rui
    Schmid, Markus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Max Planck Institute for Developmental Biology, Department of Molecular Biology, Spemannstr. 35, 72076 Tübingen, Germany.
    Contribution of major FLM isoforms to temperature-dependent flowering in Arabidopsis thaliana2017Inngår i: Journal of Experimental Botany, ISSN 0022-0957, E-ISSN 1460-2431, Vol. 68, nr 18, s. 5117-5127Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    FLOWERING LOCUS M (FLM), a component of the thermosensory flowering time pathway in Arabidopsis thaliana, is regulated by temperature-dependent alternative splicing (AS). The main splicing variant, FLM-beta, is a well-documented floral repressor that is down-regulated in response to increasing ambient growth temperature. Two hypotheses have been formulated to explain how flowering time is modulated by AS of FLM. In the first model a second splice variant, FLM-delta, acts as a dominant negative isoform that competes with FLM-beta at elevated ambient temperatures, thereby indirectly promoting flowering. Alternatively, it has been suggested that the induction of flowering at elevated temperatures is caused only by reduced FLM-beta expression. To better understand the role of the two FLM splice forms, we employed CRISPR/Cas9 technology to specifically delete the exons that characterize each splice variant. Lines that produced repressive FLM-beta but were incapable of producing FLM-delta were late flowering. In contrast, FLM-beta knockout lines that still produced FLM-delta flowered early, but not earlier than the flm-3 loss of function mutant, as would be expected if FLM-delta had a dominant-negative effect on flowering. Our data support the role of FLM-beta as a flower repressor and provide evidence that a contribution of FLM-delta to the regulation of flowering time in wild-type A. thaliana seems unlikely.

  • 130. Carlsson, Johanna
    et al.
    Svennerstam, Henrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Moritz, Thomas
    Egertsdotter, Ulrika
    Ganeteg, Ulrika
    Nitrogen uptake and assimilation in proliferating embryogenic cultures of Norway spruce-Investigating the specific role of glutamine2017Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 12, nr 8, artikkel-id e0181785Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Somatic embryogenesis is an in vitro system employed for plant propagation and the study of embryo development. Nitrogen is essential for plant growth and development and, hence, the production of healthy embryos during somatic embryogenesis. Glutamine has been shown to increase plant biomass in many in vitro applications, including somatic embryogenesis. However, several aspects of nitrogen nutrition during somatic embryogenesis remain unclear. Therefore, we investigated the uptake and assimilation of nitrogen in Norway spruce pro-embryogenic masses to elucidate some of these aspects. In our study, addition of glutamine had a more positive effect on growth than inorganic nitrogen. The nitrogen uptake appeared to be regulated, with a strong preference for glutamine; 67% of the assimilated nitrogen in the free amino acid pool originated from glutamine-nitrogen. Glutamine addition also relieved the apparently limited metabolism (as evidenced by the low concentration of free amino acids) of pro-embryogenic masses grown on inorganic nitrogen only. The unusually high alanine concentration in the presence of glutamine, suggests that alanine biosynthesis was involved in alleviating these constraints. These findings inspire further studies of nitrogen nutrition during the somatic embryogenesis process; identifying the mechanism(s) that govern glutamine enhancement of pro-embryogenic masses growth is especially important in this regard.

  • 131. Carrasco-Lopez, Cristian
    et al.
    Hernandez-Verdeja, Tamara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Departamento de Biolog´ıa Medioambiental, Centro de Investigaciones Biologicas, CSIC, 28040 Madrid, Spain.
    Perea-Resa, Carlos
    Abia, David
    Catala, Rafael
    Salinas, Julio
    Environment-dependent regulation of spliceosome activity by the LSM2-8 complex in Arabidopsis2017Inngår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 45, nr 12, s. 7416-7431Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Spliceosome activity is tightly regulated to ensure adequate splicing in response to internal and external cues. It has been suggested that core components of the spliceosome, such as the snRNPs, would participate in the control of its activity. The experimental indications supporting this proposition, however, remain scarce, and the operating mechanisms poorly understood. Here, we present genetic and molecular evidence demonstrating that the LSM2-8 complex, the protein moiety of the U6 snRNP, regulates the spliceosome activity in Arabidopsis, and that this regulation is controlled by the environmental conditions. Our results show that the complex ensures the efficiency and accuracy of constitutive and alternative splicing of selected pre-mRNAs, depending on the conditions. Moreover, miss-splicing of most targeted pre-mRNAs leads to the generation of nonsense mediated decay signatures, indicating that the LSM2-8 complex also guarantees adequate levels of the corresponding functional transcripts. Interestingly, the selective role of the complex has relevant physiological implications since it is required for adequate plant adaptation to abiotic stresses. These findings unveil an unanticipated function for the LSM2-8 complex that represents a new layer of posttranscriptional regulation in response to external stimuli in eukaryotes.

  • 132. Caseys, Celine
    et al.
    Glauser, Gaetan
    Stoelting, Kai N.
    Christe, Camille
    Albrectsen, Benedicte R.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Lexer, Christian
    Effects of interspecific recombination on functional traits in trees revealed by metabolomics and genotyping-by-resequencing2012Inngår i: Plant Ecology & Diversity, ISSN 1755-0874, E-ISSN 1755-1668, Vol. 5, nr 4, s. 457-471Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Understanding the potential and limits of recombination in adaptive evolution is of great interest to evolutionary biology. New (ultra-) high-throughput technologies in metabolomics and genomics hold great promise for addressing these questions, but their use in interspecific hybrids remains largely unexplored. Aims: Our goal was to test if recombination between the highly divergent genomes of Populus alba and P. tremula has the potential to contribute to the standing variation for functionally important chemical traits. Methods: We studied the metabolomes of interspecific hybrids by ultra-high-pressure liquid chromatography (UHPLC) coupled with quadrupole-time-of-flight (QTOF) mass spectrometry (MS) and initiated the characterisation of hybrid genomes by restriction site associated DNA (RAD) sequencing. Results: UHPLC-QTOF-MS indicated a complex 'mosaic' of chemical traits in recombinant hybrids and pointed to a heritable component for many of these. RAD sequencing confirmed the recombinant nature of natural hybrids previously characterised by microsatellites and suggested a complex history of recombination. Conclusions: It is likely that hybridisation has affected these species' genomes over several glacial cycles. Recombination holds great potential to create functionally relevant chemical variation in these trees. Nevertheless, correlations between chemical traits are not entirely broken up in recombinant hybrids, suggesting limits to adaptive evolution by genetic exchange.

  • 133. Castelain, Mathieu
    et al.
    Le Hir, Rozenn
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    The non-DNA-binding bHLH transcription factor PRE3/bHLH135/ATBS1/TMO7 is involved in the regulation of light signaling pathway in Arabidopsis2012Inngår i: Physiologia Plantarum: An International Journal for Plant Biology, ISSN 0031-9317, E-ISSN 1399-3054, Vol. 145, nr 3, s. 450-460Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Plant basic Helix-loop-helix (bHLH) proteins are transcription factors that are involved in many developmental mechanisms, including light signaling and hormone homeostasis. Some of them are non-DNA-binding proteins and could act as dominant negative regulators of other bHLH proteins by forming heterodimers, in a similar way to animal inhibitor of DNA-binding proteins. It has been recently reported that several non-DNA-binding bHLHs are involved in light signaling (KDR/PRE6), gibberellic acid signaling (PRE1/BNQ1/bHLH136) or brassinosteroid signaling (ATBS1). Here we report that Arabidopsis lines overexpressing the PRE3/bHLH135/ATBS1/TMO7 gene are less responsive to red, far-red and blue light than wild-type which is likely to explain the light hyposensitive phenotype displayed when grown under white light conditions. Using quantitative polymerase chain reaction, we show that the expression of PRE3 and KDR/PRE6 genes is regulated by light and that light-related genes are deregulated in the PRE3-ox lines. We show that PRE3 is expressed in the shoot and root meristems and that PRE3-ox lines also have a defect in lateral root development. Our results not only suggest that PRE3 is involved in the regulation of light signaling, but also support the hypothesis that non-DNA-binding bHLH genes are promiscuous genes regulating a wide range of both overlapping and specific regulatory pathways.

  • 134. Chahtane, Hicham
    et al.
    Zhang, Bo
    Norberg, Mikael
    LeMasson, Marie
    Thevenon, Emmanuel
    Bakó, László
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Benlloch, Reyes
    Holmlund, Mattias
    Parcy, Francois
    Nilsson, Ove
    Vachon, Gilles
    LEAFY activity is post-transcriptionally regulated by BLADE ON PETIOLE2 and CULLIN3 in Arabidopsis2018Inngår i: New Phytologist, ISSN 0028-646X, E-ISSN 1469-8137, Vol. 220, nr 2, s. 579-592Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Arabidopsis LEAFY (LFY) transcription factor is a key regulator of floral meristem emergence and identity. LFY interacts genetically and physically with UNUSUAL FLORAL ORGANS, a substrate adaptor of CULLIN1-RING ubiquitin ligase complexes (CRL1). The functionally redundant genes BLADE ON PETIOLE1 (BOP1) and -2 (BOP2) are potential candidates to regulate LFY activity and have recently been shown to be substrate adaptors of CULLIN3 (CUL3)-RING ubiquitin ligases (CRL3). We tested the hypothesis that LFY activity is controlled by BOPs and CUL3s in plants and that LFY is a substrate for ubiquitination by BOP-containing CRL3 complexes. When constitutively expressed, LFY activity is fully dependent on BOP2 as well as on CUL3A and B to regulate target genes such as APETALA1 and to induce ectopic flower formation. We also show that LFY and BOP2 proteins interact physically and that LFY-dependent ubiquitinated species are produced invitro in a reconstituted cell-free CRL3 system in the presence of LFY, BOP2 and CUL3. This new post-translational regulation of LFY activity by CRL3 complexes makes it a unique transcription factor subjected to a positive dual regulation by both CRL1 and CRL3 complexes and suggests a novel mechanism for promoting flower development.

  • 135. Chardon, Fabien
    et al.
    Bedu, Magali
    Calenge, Fanny
    Klemens, Patrick A. W.
    Spinner, Lara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Clement, Gilles
    Chietera, Giorgiana
    Leran, Sophie
    Ferrand, Marina
    Lacombe, Benoit
    Loudet, Olivier
    Dinant, Sylvie
    Bellini, Catherine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Neuhaus, H. Ekkehard
    Daniel-Vedele, Francoise
    Krapp, Anne
    Leaf Fructose Content Is Controlled by the Vacuolar Transporter SWEET17 in Arabidopsis2013Inngår i: Current Biology, ISSN 0960-9822, E-ISSN 1879-0445, Vol. 23, nr 8, s. 697-702Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In higher plants, soluble sugars are mainly present as sucrose, glucose, and fructose [1]. Sugar allocation is based on both source-to-sink transport and intracellular transport between the different organelles [2,3] and depends on actual plant requirements [4]. Under abiotic stress conditions, such as nitrogen limitation, carbohydrates accumulate in plant cells [5]. Despite an increasing number of genetic studies [6, 7], the genetic architecture determining carbohydrate composition is poorly known. Using a quantitative genetics approach, we determined that the carrier protein SWEET17 is a major factor controlling fructose content in Arabidopsis leaves. We observed that when SWEET17 expression is reduced, either by induced or natural variation, fructose accumulates in leaves, suggesting an enhanced storage capacity. Subcellular localization of SWEET17-GFP to the tonoplast and functional expression in Xenopus oocytes showed that SWEET17 is the first vacuolar fructose transporter to be characterized in plants. Physiological studies in planta provide evidence that SWEET17 acts to export fructose out of the vacuole. Overall, our results suggest that natural variation in leaf fructose levels is controlled by the vacuolar fructose transporter SWEET17. SWEET17 is highly conserved across the plant kingdom; thus, these findings offer future possibilities to modify carbohydrate partitioning in crops.

  • 136. Chen, Dongmei
    et al.
    Zhang, Xianxian
    Kang, Hongzhang
    Sun, Xiao
    Yin, Shan
    Du, Hongmei
    Yamanaka, Norikazu
    Gapare, Washington
    Wu, Harry X.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Commonwealth Sci & Ind Res Org Plant Ind, Canberra, ACT, Australia.
    Liu, Chunjiang
    Phylogeography of Quercus variabilis Based on Chloroplast DNA Sequence in East Asia: Multiple Glacial Refugia and Mainland-Migrated Island Populations2012Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, nr 10, s. e47268-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The biogeographical relationships between far-separated populations, in particular, those in the mainland and islands, remain unclear for widespread species in eastern Asia where the current distribution of plants was greatly influenced by the Quaternary climate. Deciduous Oriental oak (Quercus variabilis) is one of the most widely distributed species in eastern Asia. In this study, leaf material of 528 Q. variabilis trees from 50 populations across the whole distribution (Mainland China, Korea Peninsular as well as Japan, Zhoushan and Taiwan Islands) was collected, and three cpDNA intergenic spacer fragments were sequenced using universal primers. A total of 26 haplotypes were detected, and it showed a weak phylogeographical structure in eastern Asia populations at species level, however, in the central-eastern region of Mainland China, the populations had more haplotypes than those in other regions, with a significant phylogeographical structure (N-ST = 0.751 > G(ST) = 0.690, P < 0.05). Q. variabilis displayed high interpopulation and low intrapopulation genetic diversity across the distribution range. Both unimodal mismatch distribution and significant negative Fu's F-S indicated a demographic expansion of Q. variabilis populations in East Asia. A fossil calibrated phylogenetic tree showed a rapid speciation during Pleistocene, with a population augment occurred in Middle Pleistocene. Both diversity patterns and ecological niche modelling indicated there could be multiple glacial refugia and possible bottleneck or founder effects occurred in the southern Japan. We dated major spatial expansion of Q. variabilis population in eastern Asia to the last glacial cycle(s), a period with sea-level fluctuations and land bridges in East China Sea as possible dispersal corridors. This study showed that geographical heterogeneity combined with climate and sea-level changes have shaped the genetic structure of this wide-ranging tree species in East Asia.

  • 137.
    Chorell, Elin
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Thysell, Elin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Jonsson, Pär
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Eklund, Caroline
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap.
    Silfver, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap.
    Carlsson, Inga-Britt
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Lundgren, Krister
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Moritz, Thomas
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Svensson, Michael
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
    Antti, Henrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    A Multivariate Screening Strategy for Investigating Metabolic Effects of Strenuous Physical Exercise in Human Serum2007Inngår i: Journal of Proteome Research, ISSN 1535-3893, Vol. 6, nr 6, s. 2113-2120Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A novel hypothesis-free multivariate screening methodology for the study of human exercise metabolism in blood serum is presented. Serum gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) data was processed using hierarchical multivariate curve resolution (H-MCR), and orthogonal partial least-squares discriminant analysis (OPLS-DA) was used to model the systematic variation related to the acute effect of strenuous exercise. Potential metabolic biomarkers were identified using data base comparisons. Extensive validation was carried out including predictive H-MCR, 7-fold full cross-validation, and predictions for the OPLS-DA model, variable permutation for highlighting interesting metabolites, and pairwise t tests for examining the significance of metabolites. The concentration changes of potential biomarkers were verified in the raw GC/TOFMS data. In total, 420 potential metabolites were resolved in the serum samples. On the basis of the relative concentrations of the 420 resolved metabolites, a valid multivariate model for the difference between pre- and post-exercise subjects was obtained. A total of 34 metabolites were highlighted as potential biomarkers, all statistically significant (p < 8.1E-05). As an example, two potential markers were identified as glycerol and asparagine. The concentration changes for these two metabolites were also verified in the raw GC/TOFMS data.The strategy was shown to facilitate interpretation and validation of metabolic interactions in human serum as well as revealing the identity of potential markers for known or novel mechanisms of human exercise physiology. The multivariate way of addressing metabolism studies can help to increase the understanding of the integrative biology behind, as well as unravel new mechanistic explanations in relation to, exercise physiology.

  • 138. Chow, Wah Soon
    et al.
    Lee, Hae-Youn
    He, Jie
    Hendrickson, Luke
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601, Australia.
    Hong, Young-Nam
    Matsubara, Shizue
    Photoinactivation of photosystem II in leaves2005Inngår i: Photosynthesis Research, ISSN 0166-8595, E-ISSN 1573-5079, Vol. 84, nr 1-3, s. 35-41Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Photoinactivation of Photosystem II (PS II), the light-induced loss of ability to evolve oxygen, inevitably occurs under any light environment in nature, counteracted by repair. Under certain conditions, the extent of photoinactivation of PS II depends on the photon exposure (light dosage, x), rather than the irradiance or duration of illumination per se, thus obeying the law of reciprocity of irradiance and duration of illumination, namely, that equal photon exposure produces an equal effect. If the probability of photoinactivation (p) of PS II is directly proportional to an increment in photon exposure (p = kDeltax, where k is the probability per unit photon exposure), it can be deduced that the number of active PS II complexes decreases exponentially as a function of photon exposure: N = Noexp(-kx). Further, since a photon exposure is usually achieved by varying the illumination time (t) at constant irradiance (I), N = Noexp(-kI t), i.e., N decreases exponentially with time, with a rate coefficient of photoinactivation kI, where the product kI is obviously directly proportional to I. Given that N = Noexp(-kx), the quantum yield of photoinactivation of PS II can be defined as -dN/dx = kN, which varies with the number of active PS II complexes remaining. Typically, the quantum yield of photoinactivation of PS II is ca. 0.1micromol PS II per mol photons at low photon exposure when repair is inhibited. That is, when about 10(7) photons have been received by leaf tissue, one PS II complex is inactivated. Some species such as grapevine have a much lower quantum yield of photoinactivation of PS II, even at a chilling temperature. Examination of the longer-term time course of photoinactivation of PS II in capsicum leaves reveals that the decrease in N deviates from a single-exponential decay when the majority of the PS II complexes are inactivated in the absence of repair. This can be attributed to the formation of strong quenchers in severely-photoinactivated PS II complexes, able to dissipate excitation energy efficiently and to protect the remaining active neighbours against damage by light.

  • 139.
    Christensen, Anna
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Svensson, Karin
    Persson, Staffan
    Jung, Joanna
    Michalak, Marek
    Widell, Susanne
    Sommarin, Marianne
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Functional characterization of Arabidopsis calreticulin1a: a key alleviator of endoplasmic reticulum stress.2008Inngår i: Plant and Cell Physiology, ISSN 1471-9053, Vol. 49, nr 6, s. 912-24Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The chaperone calreticulin plays important roles in a variety of processes in the endoplasmic reticulum (ER) of animal cells, such as Ca2+ signaling and protein folding. Although the functions of calreticulin are well characterized in animals, only indirect evidence is available for plants. To increase our understanding of plant calreticulins we introduced one of the Arabidopsis isoforms, AtCRT1a, into calreticulin-deficient (crt–/–) mouse embryonic fibroblasts. As a result of calreticulin deficiency, the mouse crt–/– fibroblasts have decreased levels of Ca2+ in the ER and impaired protein folding abilities. Expression of the AtCRT1a in mouse crt–/– fibroblasts rescued these phenotypes, i.e. AtCRT1a restored the Ca2+-holding capacity and chaperone functions in the ER of the mouse crt–/– fibroblasts, demonstrating that the animal sorting machinery was also functional for a plant protein, and that basic calreticulin functions are conserved across the Kingdoms. Expression analyses using a β-glucuronidase (GUS)–AtCRT1a promoter construct revealed high expression of CRT1a in root tips, floral tissues and in association with vascular bundles. To assess the impact of AtCRT1a in planta, we generated Atcrt1a mutant plants. The Atcrt1a mutants exhibited increased sensitivity to the drug tunicamycin, an inducer of the unfolded protein response. We therefore conclude that AtCRT1a is an alleviator of the tunicamycin-induced unfolded protein response, and propose that the use of the mouse crt–/– fibroblasts as a calreticulin expression system may prove useful to assess functionalities of calreticulins from different species.

  • 140.
    Christensen, Anna
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Svensson, Karin
    Thelin, Lisa
    Zhang, Wenjing
    Tintor, Nico
    Prins, Daniel
    Funke, Norma
    Michalak, Marek
    Schulze-Lefert, Paul
    Saijo, Yusuke
    Sommarin, Marianne
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Widell, Susanne
    Persson, Staffan
    Higher plant calreticulins have acquired specialized functions in arabidopsis2010Inngår i: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 5, nr 6, s. e11342-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Calreticulin (CRT) is a ubiquitous ER protein involved in multiple cellular processes in animals, such as protein folding and calcium homeostasis. Like in animals, plants have evolved divergent CRTs, but their physiological functions are less understood. Arabidopsis contains three CRT proteins, where the two CRTs AtCRT1a and CRT1b represent one subgroup, and AtCRT3 a divergent member. Methodology/Principal Findings: Through expression of single Arabidopsis family members in CRT-deficient mouse fibroblasts we show that both subgroups have retained basic CRT functions, including ER Ca2+-holding potential and putative chaperone capabilities. However, other more general cellular defects due to the absence of CRT in the fibroblasts, such as cell adhesion deficiencies, were not fully restored. Furthermore, in planta expression, protein localization and mutant analyses revealed that the three Arabidopsis CRTs have acquired specialized functions. The AtCRT1a and CRT1b family members appear to be components of a general ER chaperone network. In contrast, and as recently shown, AtCRT3 is associated with immune responses, and is essential for responsiveness to the bacterial Pathogen-Associated Molecular Pattern (PAMP) elf18, derived from elongation factor (EF)-Tu. Whereas constitutively expressed AtCRT1a fully complemented Atcrt1b mutants, AtCRT3 did not. Conclusions/Significance: We conclude that the physiological functions of the two CRT subgroups in Arabidopsis have diverged, resulting in a role for AtCRT3 in PAMP associated responses, and possibly more general chaperone functions for AtCRT1a and CRT1b.

  • 141.
    Chrobok, Daria
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    To “leaf” or not to “leaf”: Understanding the metabolic adjustments associated with leaf senescence2018Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    The adequate execution of the final developmental stage of a leaf, leaf senescence, is crucial to the long-term survival of the plant. During senescence cellular structures like membranes, proteins, lipids and macromolecules are degraded and released nutrients are relocated to developing parts of the plant, such as young leaves, stems, flowers, siliques and ultimately seeds that are dependent on this nutrient remobilization. The first visible sign of senescence is the yellowing of leaves indicating the degradation of chlorophyll and the dismantling of chloroplasts. As a consequence, senescing leaves cannot perform photosynthesis anymore and the delivery of energy from the chloroplast is compromised. As chloroplasts lose their function, the course of the senescence program requires a stable alternative energy sources that support nutrient remobilization while simultaneously ensuring a basic metabolism.

    To study leaf senescence I used the model plant Arabidopsis thaliana and applied different experimental approaches: Developmental Leaf Senescence (DLS), individual darkened leaves (IDL), completely darkened plants (DP) and a stay-green mutant which displays a delayed senescence phenotype during IDL. Using a combination of physiological, microscopic, transcriptomic and metabolomic analyses similarities and differences between these experimental setups were investigated with focus on the functions of mitochondria during leaf senescence.

    The catabolism of amino acids and the subsequent release of glutamate into the mitochondrial matrix seem to play an important role for nitrogen remobilization during DLS and IDL. Glutamate is then transported to the cytoplasm and transformed into glutamine, which can serve as long distance nitrogen export metabolite in the plant. Furthermore, senescing leaves in IDL are not only source tissues for nutrient remobilization in the plant, but we also detected labelled carbon in the darkened leaves, indicating a communication between the IDL and leaves in light. In contrary to the senescence inducing systems of DLS and IDL, in DP and the stay-green mutant investigated here, senescence is not induced by dark treatment. In both experimental setups we measured an accumulation of amino acids in the darkened leaves, in particular those with high N content. This could make reduced carbon available as alternative energy source during darkness. In this thesis we observed that mitochondria play an important role in nutrient reallocation processes during leaf senescence. The overall energy status of senescing tissues depends on mitochondria and especially amino acid metabolism seems to have a vital role during the senescence processes both for energy supply and nutrient reallocation.

  • 142.
    Chrobok, Daria
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Law, Simon R.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Brouwer, Bastiaan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Linden, Pernilla
    Ziolkowska, Agnieszka
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Liebsch, Daniela
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Narsai, Reena
    Szal, Bozena
    Moritz, Thomas
    Rouhier, Nicolas
    Whelan, James
    Gardeström, Per
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Keech, Olivier
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence2016Inngår i: Plant Physiology, ISSN 0032-0889, E-ISSN 1532-2548, Vol. 172, nr 4, s. 2132-2153Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of alpha-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.

  • 143. Ciereszko, I
    et al.
    Johansson, H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Hurry, Vaughan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Kleczkowski, L.A.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis.2001Inngår i: Planta, ISSN 0032-0935, Vol. 212, nr 4, s. 598-605Artikkel i tidsskrift (Fagfellevurdert)
  • 144. Ciereszko, I
    et al.
    Johansson, H
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik.
    Kleczkoski, L.A.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis.2001Inngår i: Biochemical Journal, Vol. 354, nr 1, s. 67-72Artikkel i tidsskrift (Fagfellevurdert)
  • 145. Ciereszko, I
    et al.
    Kleczkowski, Leszek A
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Effects of phosphate deficiency and sugars on expression of rab18 in Arabidopsis: hexokinase-dependent and okadaic acid-sensitive transduction of the sugar signal2002Inngår i: Biochimica et Biophysica Acta, Gene Structure and Expression, ISSN 0167-4781, E-ISSN 1879-2634, Vol. 1579, nr 1, s. 43-49Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The lack of phosphorus in the nutrient medium increased the expression of rab18, an abscisic acid (ABA)-responsive gene, in leaves of Arabidopsis thaliana. The expression of this gene was also upregulated after feeding the excised leaves with D-mannose and sucrose for both wild-type (wt) and aba1 (ABA-deficient) mutant plants. For aba1 mutants, both the phosphate deficiency and sugar effects on rab18 were weaker than in wt plants, suggesting possible involvement of both ABA-dependent and ABA-independent components in signalling. Transgenic Arabidopsis plants with increased hexokinase (HXK) expression had a much higher sucrose-dependent level of rab18 mRNA, implying the HXK involvement in sensing/transmitting the sugar signal. Sucrose-related induction of rab18 was completely inhibited by okadaic acid (OKA), suggesting the involvement of specific protein phosphatase(s) in transduction of the sugar signal. The results suggest that rab18 is regulated via interaction of a plethora of signals, including ABA, sugar and phosphate deficiency, and that the sugar effect is transmitted via a HXK-pathway, involving OKA-sensitive component(s). The findings prompt caution in linking the expression of rab18 solely to ABA signalling. (C) 2002 Elsevier Science B.V. All rights reserved.

  • 146. Ciereszko, I
    et al.
    Kleczkowski, Leszek A
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms2002Inngår i: Plant physiology and biochemistry (Paris), ISSN 0981-9428, E-ISSN 1873-2690, Vol. 40, nr 11, s. 907-911Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Sucrose synthase (SuSy) is an important enzyme involved in sucrose synthesis/breakdown in all plants. Sus1, a major SuSy gene in Arabidopsis thaliana, was upregulated by sucrose, glucose and D-mannose, but not 3-O-methylglucose, when those compounds were fed to excised leaves. Mannos, was more effective than glucose or sucrose in the induction of Sus1, with strong effects observed at a concentration as low as 20, mM. When fed to the excised leaves, N-acetyl-glucosamine, an inhibitor of hexokinase (HXK) enzymatic activity, decreased sucrose- and glucose-dependent, but not mannose-dependent, upregulation of Sus1. The sucrose/glucose-dependent Sus1 expression was strongly induced in transgenic Arabidopsis HXK-overexpressing (OE) plants, whereas mannose-dependent Sus1 expression markedly decreased in OE, but not in HXK-"antisense", Arabidopsis plants. Feeding with sucrose resulted in a marked increase of glucose content in leaves, suggesting that it is glucose rather than sucrose that serves as a signal in upregulating Sus1 expression in sucrose-fed plants. The data suggest that Sus1 is regulated by a HXK-dependent pathway, with glucose and mannose effects differentially sensed/transmitted via the HXK step. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

  • 147. Ciereszko, Iwona
    et al.
    Johansson, Henrik
    Kleczkowski, Leszek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDP-glucose pyrophosphorylase in Arabidopsis.2005Inngår i: Journal of Plant Physiology, ISSN 0176-1617, Vol. 162, nr 3, s. 343-53Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effects of inorganic phosphate (Pi) status, light/dark and sucrose on expression of UDP-glucose pyrophosphorylase (UGPase) gene (Ugp), which is involved in sucrose/ polysaccharides metabolism, were investigated using Arabidopsis wild-type (wt) plants and mutants impaired in Pi and carbohydrate status. Generally, P-deficiency resulted in increased Ugp expression and enhanced UGPase activity and protein content, as found for wt plants grown on P-deficient and complete nutrient solution, as well as for pho1 (P-deficient) mutants. Ugp was highly expressed in darkened leaves of pho1, but not wt plants, daily tight exposure enhanced Ugp expression both in wt and pho mutants. The pho1 and pho2 (Pi-accumulating) mutations had Little or no effect on leaf contents of glucose and fructose, regardless of light/dark conditions, whereas pho1 plants had much higher Levels of sucrose and starch in the dark than pho2 and wt plants. The Ugp was up-regutated when leaves were fed with sucrose in wt plants, but the expression in pho2 background was much less sensitive to sucrose supply than in wt and pho1 plants. Expression of Ugp in pgm1 and sex1 mutants (impaired in starch/sugar content) was not dependent on starch content, and not tightly correlated with soluble sugar status. Okadaic acid (OKA) effectively blocked the P-starvation and sucrose -dependent expression of Ugp in excised leaves, whereas staurosporine (STA) had only a small effect on both processes (especially in -P leaves), suggesting that P-starvation and sucrose effects on Ugp are transmitted by pathways that may share similar components with respect to their (in)sensitivity to OKA and STA. The results of this study suggest that Ugp expression is modulated by an interaction of signals derived from P-deficiency status, sucrose content and dark/ light conditions, and that light/ sucrose and P-deficiency may have additive effects on Ugp expression. (c) 2004 Elsevier GmbH. All rights reserved.

  • 148. Ciereszko, Iwona
    et al.
    Kleczkowski, Leszek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Expression of several genes involved in sucrose/starch metabolism as affected by different strategies to induce phosphate deficiency in Arabidopsis2005Inngår i: Acta Physiologiae Plantarum, Vol. 27, s. 147-155Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effects of inorganic phosphate (Pi) deficiency on expression of genes encoding ADP-glucose pyrophosphorylase small and large subunits (ApS and ApL1, ApL2, ApL3 genes), UDP-glucose pyrophosphorylase (Ugp gene), sucrose synthase (Sus1), soluble and insoluble acid invertases (Inv and Invcw) and hexokinase (Hxk1 gene), all involved in carbohydrate metabolism, were investigated in Arabidopsis thaliana (L.) Heynh. We used soil-grown pho mutants affected in Pi status, as well as wild-type (wt) plants grown under Pi deficiency conditions in liquid medium, and leaves of wt plants fed with D-mannose. Generally, ApS, ApL1, Ugp and Inv genes were upregulated, although to a varied degree, under conditions of Pi-stress. The applied conditions had differential effects on expression of other genes studied. For instance, Sus1 was downregulated in pho1 (Pi-deficient) mutant, but was unaffected in wt plants grown in liquid medium under P-deficiency. Mannose had distinct concentration-dependent effects on expression of genes under study, possibly reflecting a dual role of mannose as a sink for Pi and as glucose analog. Feeding Pi (at up to 200 mM) to the detached leaves of wt plants strongly affected the expression of ApL1, ApL2, Sus1 and Inv genes, possibly due to an osmotic effect exerted by Pi. The data suggest that ADP-glucose and UDP-glucose pyrophosphorylases (enzymes indirectly involved in Pi recycling) as well as invertases (sucrose hydrolysis) are transcriptionally regulated by Pi-deficiency, which may play a role in homeostatic mechanisms that acclimate the plant to the Pi-stress conditions.

  • 149. Ciereszko, Iwona
    et al.
    Kleczkowski, Leszek
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Phosphate deficiency dependent upregulation of UDP-glucose pyrophosphorylase genes is insensitive to ABA and ethylene status in Arabidopsis leaves2006Inngår i: Acta Physiologiae Plantarum, Vol. 28, s. 387-393Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The effects of inorganic phosphate (Pi) deficiency and ABA/ethylene status on expression of UDP-glucose pyrophosphorylase (UGPase) genes (Ugp), involved in sucrose/polysaccharide metabolism, were investigated. Both wild-type (wt), aba and abi mutants (ABA-deficient and -insensitive), etr, ein and eto (ethylene resistant and overproducing) grown on Pi-deficient and complete nutrient solution, as well as pho1 (Pi-deficient) mutants of Arabidopsis thaliana were used for experiments. Generally, Pi-deficiency conditions (including mannose feeding to decrease cytosolic Pi pool) resulted in an increase of Ugp expression in the leaves, under all experimental conditions. Mutant backgrounds reflecting differences in ABA or ethylene status/ sensitivity had no effect on the level of Ugp up-regulation by Pi-stress. Furthermore, feeding ABA to the leaves of wt and pho1 plants had no effect on Ugp expression, regardless of the sucrose status in the leaves. The data suggest that Pi deficiency leading to up-regulation of Ugp acts independently of ABA and ethylene status.

  • 150. CLARKE, AK
    et al.
    CAMPBELL, D
    Gustafsson, Petter
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    Oquist, Gunnar
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysiologisk botanik. Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC).
    DYNAMIC-RESPONSES OF PHOTOSYSTEM-II AND PHYCOBILISOMES TO CHANGING LIGHT IN THE CYANOBACTERIUM SYNECHOCOCCUS SP PCC-79421995Inngår i: Planta, ISSN 0032-0935, E-ISSN 1432-2048, Vol. 197, nr 3, s. 553-562Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We have examined the molecular and photosynthetic responses of a planktonic cyanobacterium to shifts in light intensity over periods up to one generation (7 h). Synechococcus sp. PCC 7942 possesses two functionally distinct forms of the D1 protein, D1:1 and D1:2. Photosystem II (PSII) centers containing D1:1 are less efficient and more susceptible to photoinhibition than are centers containing D1:2, Under 50 mu mol photons m(-2). s(-1), PSII centers contain D1:1, but upon shifts to higher light (200 to 1000 mu mol photons m(-2). s(-1)), D1:1 is rapidly replaced by D1:2, with the rate of interchange dependent on the magnitude of the light shift. This interchange is readily reversed when cells are returned to 50 mu mol photons m(-2). s(-1). If, however, incubation under 200 mu mol photons m(-2). s(-1) is extended, D1:1 content recovers and by 3 h after the light shift D1:1 once again predominates. Oxygen evolution and chlorophyll (Chi) fluorescence measurements spanning the light shift and D1 interchanges showed an initial inhibition of photosynthesis at 200 mu mol photons m(-2). s(-1), which correlates with a proportional loss of total D1 protein and a cessation of growth. This was followed by recovery in photosynthesis and growth as the maximum level of D1:2 is reached after 2 h at 200 mu mol photons m(-2). s(-1) Thereafter, photosynthesis steadily declines with the loss of D1:2 and the return of the less-efficient D1:1. During the D1:1/D1:2 interchanges, no significant change occurs in the level of phycocyanin (PC) and Chl a, nor of the phycobilisome rod linkers. Nevertheless, the initial PC/Chl a ratio strongly influences the magnitude of photoinhibition and recovery during the light shifts. In Synechococcus sp. PCC 7942, the PC/Chl a ratio responds only slowly to light intensity or quality, while the rapid but transient interchange between D1:1 and D1:2 modulates PSII activity to limit damage upon exposure to excess light.

1234567 101 - 150 of 1013
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf