umu.sePublications
Change search
Refine search result
1234567 151 - 200 of 417
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 151.
    Harandi, Vahid M
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Gaied, Aida RN
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Pedrosa-Domellöf, Fatima
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Liu, Jing-Xia
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Unchanged neurotrophic factors and their receptors correlate with sparing in extraocular muscles in amyotrophic lateral sclerosis2016In: Investigative Ophthalmology and Visual Science, ISSN 0146-0404, E-ISSN 1552-5783, Vol. 57, no 15, p. 6831-6842Article in journal (Refereed)
    Abstract [en]

    Purpose: To investigate the impact of amyotrophic lateral sclerosis (ALS) on the extraocular muscles (EOMs) by examining the distribution of neurotrophic factors (NTFs) and their receptors in EOMs and limb muscles from ALS transgenic mice.

    Methods: Muscle samples collected from transgenic mice overexpressing human superoxide dismutase type 1 mutations (SOD1G93A, the most widely used mouse model of ALS) at 50 and 150 days as well as age-matched controls were analyzed with immunohistochemistry using antibodies against brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), neurotrophin-4/5 (NT-4), glial cell line-derived neurotrophic factor (GDNF), and the neurotrophin receptors p75NTR, tyrosine kinase (Trk) receptor TrkB and TrkC, and GDNF family receptor alpha-1 (GFRα-1).

    Results: There was an intrinsic difference in NTF expression between EOMs and limb muscles in control mice: EOMs presented significantly lower number of neuromuscular junctions (NMJs) labeled for BDNF and NT-4 at 50 days, and for BDNF and GDNF at 150 days, compared with the control limb muscles of corresponding age. In ALS transgenic mice at 150 days, NTF expression in limb muscles was significantly changed but not in EOMs: the limb muscles presented a significant decline in the number of NMJs labeled for BDNF, NT-4, GDNF, p75NTR, TrkB, and TrkC, which was not observed in EOMs.

    Conclusions: The significant differences in expression of NTFs on NMJs between EOMs and limb muscles in both control and ALS transgenic mice suggest that NTF may be involved in the pathogenesis of ALS and the resistance of EOMs to the disease.

  • 152.
    Hart, Andrew M
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Blond-McIndoe Research Laboratories, The University of Manchester, Stopford Building, Room 3.106, Oxford; Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, 84 Castle Street, Glasgow G4 0SF, UK.
    Terenghi, Giorgio
    Frozen-section fluorescence microscopy and stereology in the quanti cation of neuronal death within dorsal root ganglia2004In: Journal of Molecular Histology, ISSN 1567-2379, E-ISSN 1567-2387, Vol. 35, no 6, p. 565-580Article in journal (Refereed)
    Abstract [en]

    Histochemical and morphological research increasingly relies upon quanti cation of complex biological systems. For such investigations to be meaningful, quanti cation techniques must meet the seemingly conflicting requirements of being theoretically robust, yet sufficiently practical to facilitate widespread applicability. Validity ought to be enhanced by theoretical simplicity, use of measured rather than assumed variables, and minimising observer interpretation. Practicality is facilitated by simplifying and reducing measurements, broadening applicability, and reducing costs and analysis time. As a result, quanti cation systems that rely upon sampling and estimation have been favoured over serial reconstruction techniques. To provide reliable estimates, sampling must be valid at all levels from tissue harvest, to the selection of microscope fields in which quanti cation is performed by techniques that account for the anisotropic distribution, and variable size of many elements in biological systems. These principles are embodied in the development of a stereological approach to the quanti cation of neuronal death within dorsal root ganglia after peripheral nerve injury. This frozen section technique is efficient and flexible, since it permits simultaneous morphological examination, TUNEL, or standard fluorescence immunohistochemistry, broadening its applicability. Section shrinkage is minimal, and counting by optical disection has proved to be time-efficient and sufficiently reproducible to reliably detect losses in the order of 5%, with minimal inter-observer variation. As is discussed, stereology has not yet met with universal acceptance, but by balancing theoretical validity with practical applicability, it has proved an excellent approach to the investigation of neuronal death within dorsal root ganglia.

  • 153. Hart, Andrew M
    et al.
    Terenghi, Giorgio
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy. Umeå University, Faculty of Medicine, Surgical and Perioperative Sciences, Hand Surgery.
    Neuronal death after peripheral nerve injury and experimental strategies for neuroprotection.2008In: Neurological Research, ISSN 0161-6412, E-ISSN 1743-1328, Vol. 30, no 10, p. 999-1011Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: Despite considerable microsurgical innovation in peripheral nerve repair, the outcome has improved little since the 1940s, reflecting surgical inability to adequately address the complex neurobiology of nerve injury and regeneration. Axotomy-induced neuronal death is potentially the most fundamental problem, and given recently published data, a review is timely. METHODS: Initial review of relevant doctoral theses from the University of Umeå, and Blond-McIndoe Research Laboratories, the University of Manchester, plus initial PubMed search including terms 'neuron death' and 'neuroprotection', subsequently expanded to relevant quoted articles. RESULTS: Various factors related to patient (principally age) and injury (Sunderland grade, proximity to cell body and mechanism) determine the extent of neuronal death, the mechanism of which is reviewed. A considerable proportion of sensory neurons (particularly small cutaneous afferents) die after distal injury and death is more widespread after proximal injury. Motor neurons are susceptible to post-ganglionic plexus and spinal root level injury. Root avulsion causes the greatest cell death. The time course of neuronal death is fortuitously slow and mainly occurs by a process akin to apoptosis. A therapeutic window therefore exists, as do potential neuroprotective targets. Nerve repair is partly neuroprotective, but must be performed early. Exogenous neurotrophic factor administration (e.g. in tissue engineered conduits) is beneficial, but not practical for various reasons. In contrast, adjuvant neuroprotective pharmacotherapy is practical, and two clinically safe agents are reviewed. Acetyl-L-carnitine arrests sensory neuronal death and speeds up regeneration. N-acetyl-cysteine provides comparable sensory neuronal protection via mitochondrial preservation and protects motor neurons. Both agents are well characterized experimentally and highly effective even after clinically relevant delays between injury and treatment. Barriers to translational research are being addressed. DISCUSSION: The future of peripheral nerve repair lies in modulating neurobiology at the time of injury, repair and during regeneration. Neuroprotection may be an essential component of that therapeutic package.

  • 154.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Blond-McIndoe Laboratories, Royal Free and University College Medical School, University Department of Surgery, Royal Free Campus, Rowland Hill Street, London, UK.
    Brännström, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Pathology.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    Blond-McIndoe Laboratories, Royal Free and University College Medical School, University Department of Surgery, Royal Free Campus, Rowland Hill Street, London, UK.
    Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death & elimination2002In: Experimental Brain Research, ISSN 0014-4819, E-ISSN 1432-1106, Vol. 142, no 3, p. 308-318Article in journal (Refereed)
    Abstract [en]

    The timecourse of cell death in adult dorsal root ganglia after peripheral axotomy has not been fully characterised. It is not clear whether neuronal death begins within I week of axotomy or continues beyond 2 months after axotomy. Similarly, neither the timecourse of satellite cell death in the adult, nor the effect of nerve repair has been described. L4 and L5 dorsal root ganglia were harvested at 1-14 days, 1-6 months after sciatic nerve division in the adult rat, in accordance with the Animals (Scientific Procedures) Act 1986. In separate groups the nerve was repaired either immediately or following a 1-week delay, and the ganglia were harvested 2 weeks after the initial transection. Microwave permeabilisation and triple staining enabled combined TUNEL staining, morphological examination and neuron counting by the stereological optical dissector technique. TUNEL-positive neurons, exhibiting a range of morphologies, were seen at all timepoints (peak 25 cells/group 2 weeks after axotomy) in axotomised ganglia only. TUNEL-positive satellite cell numbers peaked 2 months after axotomy and were more numerous in axotomised than control ganglia. L4 control ganglia contained 13,983 (SD 568) neurons and L5, 16,285 (SD 1,313). Neuron loss was greater in L5 than L4 axotomised ganglia, began at I week (15%, P=0.045) post-axotomy, reached 35% at 2 months (P<0.001) and was not significantly greater at 4 months or 6 months. Volume of axotomised ganglia fell to 19% of control by 6 months (P<0.001). In animals that underwent nerve repair, both the number of TUNEL-positive neurons and neuron loss were reduced. Immediate repair was more protective than repair after a 1-week delay. Thus TUNEL positivity precedes actual neuron loss, reflecting the time taken to complete cell death and elimination. Neuronal death begins within I day of peripheral axotomy, the majority occurs within the first 2 months, and limited death is still occurring at 6 months. Neuronal death is modulated by peripheral nerve repair and by its timing after axotomy. Secondary satellite cell death also occurs, peaking 2 months after axotomy. These results provide a logical framework for future research into neuronal and satellite cell death within the dorsal root ganglia and provide further insight into the process of axotomy induced neuronal death.

  • 155.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    Kellerth, Jan-Olof
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy. Umeå University, Faculty of Medicine, Surgical and Perioperative Sciences, Hand Surgery.
    Sensory neuroprotection, mitochondrial preservation, and therapeutic potential of N-acetyl-cysteine after nerve injury.2004In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 125, no 1, p. 91-101Article in journal (Refereed)
    Abstract [en]

    Neuronal death is a major factor in many neuropathologies, particularly traumatic, and yet no neuroprotective therapies are currently available clinically, although antioxidants and mitochondrial protection appear to be fruitful avenues of research. The simplest system involving neuronal death is that of the dorsal root ganglion after peripheral nerve trauma, where the loss of approximately 40% of primary sensory neurons is a major factor in the overwhelmingly poor clinical outcome of the several million nerve injuries that occur each year worldwide. N-acetyl-cysteine (NAC) is a glutathione substrate which is neuroprotective in a variety of in vitro models of neuronal death, and which may enhance mitochondrial protection. Using TdT uptake nick-end labelling (TUNEL), optical disection, and morphological studies, the effect of systemic NAC treatment upon L4 and 5 primary sensory neuronal death after sciatic nerve transection was investigated. NAC (150 mg/kg/day) almost totally eliminated the extensive neuronal loss found in controls both 2 weeks (no treatment 21% loss, NAC 3%, P=0.03) and 2 months after axotomy (no treatment 35% loss, NAC 3%, P=0.002). Glial cell death was reduced (mean number TUNEL positive cells 2 months after axotomy: no treatment 51/ganglion pair, NAC 16/ganglion pair), and mitochondrial architecture was preserved. The effects were less profound when a lower dose was examined (30 mg/kg/day), although significant neuroprotection still occurred. This provides evidence of the importance of mitochondrial dysregulation in axotomy-induced neuronal death in the peripheral nervous system, and suggests that NAC merits investigation in CNS trauma. NAC is already in widespread clinical use for applications outside the nervous system; it therefore has immediate clinical potential in the prevention of primary sensory neuronal death, and has therapeutic potential in other neuropathological systems.

  • 156.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    Blond–McIndoe Centre, Royal Free and University College Medical School, London, UK.
    Exogenous leukaemia inhibitory factor enhances nerve regeneration after late secondary repair using a bioartificial nerve conduit2003In: British Journal of Plastic Surgery, ISSN 0007-1226, E-ISSN 1465-3087, Vol. 56, no 5, p. 444-450Article in journal (Refereed)
    Abstract [en]

    The clinical outcome of peripheral nerve injuries remains disappointing, even in the ideal situation of a primary repair performed with optimal microsurgical techniques. Primary repair is appropriate for only about 85% of injuries, and outcome is worse following secondarynerverepair, partly owing to the reduced regenerative potential of chronically axotomised neurons. Leukaemiainhibitoryfactor (LIF) is a gp-130 neurocytokine that is thought to act as an ‘injury factor’, triggering the early-injury phenotype within neurons and potentially boosting their regenerative potential aftersecondarynerverepair. At 2–4 months after sciatic nerve axotomy in the rat, 1 cm gaps were repaired using either nerve isografts or poly-3-hydroxybutyrate conduits containing a calcium alginate and fibronectin hydrogel.

    Regeneration was determined by quantitative immunohistochemistry 6 weeks afterrepair, and the effect of incorporating recombinant LIF (100 ng/ml) into the conduits was assessed. LIF increased the regeneration distance in repairs performed after both 2 months (69%, P=0.019) and 4 months (123%, P=0.021), and was statistically comparable to nerve graft. The total area of axonal immunostaining increased by 21% (P>0.05) and 63% (P>0.05), respectively. Percentage immunostaining area was not increased in the 2 months group, but increased by 93% in the repairs performed 4 months after axotomy. Exogenous LIF, therefore, has a potential role in promoting peripheral nerveregenerationaftersecondaryrepair, and can be effectively delivered within poly-3-hydroxybutyrate bioartificialconduits used for nerverepair.

  • 157.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Blond-McIndoe Centre, Royal Free and University College Medical School, University Department of Surgery, Royal Free Campus, Rowland Hill Street, London NW3 2PF, UK.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pharmacological enhancement of peripheral nerve regeneration in the rat by systemic acetyl-L-carnitine treatment2002In: Neuroscience Letters, ISSN 0304-3940, E-ISSN 1872-7972, Vol. 334, no 3, p. 181-185Article in journal (Refereed)
    Abstract [en]

    Peripheral nerve trauma remains a major cause of morbidity, largely due to the death of similar to40% of innervating sensory neurons, and to slow regeneration after repair. Acetyl-L-carnitine (ALCAR) is a physiological peptide that virtually eliminates sensory neuronal death, and may improve regeneration after primary nerve repair. This study determines the effect of ALCAR upon regeneration after secondary nerve repair, thereby isolating its effect upon neuronal regenerative capacity. Two months after unilateral sciatic nerve division 1 cm nerve graft repairs were performed (n = 5), and treatment with 50 mg/kg/day ALCAR was commenced for 6 weeks until harvest. Regeneration area and distance were determined by quantitative immunohistochemistry. ALCAR treatment significant increased immunostaining for both nerve fibres (total area 264% increase, P < 0.001; percentage area 229% increase, P < 0.001), and Schwann cells (total area 264% increase, P < 0.05; percentage area 86% increase, P < 0.05), when compared to no treatment. Regeneration into the distal stump was greatly enhanced (total area 2242% increase, P = 0.008; percentage area 3034% increase, P = 0.008). ALCAR significantly enhances the regenerative capacity of neurons that survive peripheral nerve trauma, in addition to its known neuroprotective effects.

  • 158.
    Hart, Andrew McKay
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences. Blond-McIndoe Centre, Royal Free & University College Medical School, University Department of Surgery, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Youle, Mike
    Royal Free Centre for HIV Medicine, Royal Free Hospital, London, UK.
    Terenghi, Giorgio
    Blond-McIndoe Centre, Royal Free & University College Medical School, University Department of Surgery, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
    Systemic acetyl-L-carnitine eliminates sensory neuronal loss after peripheral axotomy: a new clinical approach in the management of peripheral nerve trauma2002In: Experimental Brain Research, ISSN 0014-4819, E-ISSN 1432-1106, Vol. 145, no 2, p. 182-189Article in journal (Refereed)
    Abstract [en]

    Several hundred thousand peripheral nerve injuries occur each year in Europe alone. Largely due to the death of around 40% of primary sensory neurons, sensory outcome remains disappointingly poor despite considerable advances in surgical technique; yet no clinical therapies currently exist to prevent this neuronal death. Acetyl-L-carnitine (ALCAR) is a physiological peptide with roles in mitochondrial bioenergetic function, which may also increase binding of nerve growth factor by sensory neurons. Following unilateral sciatic nerve transection, adult rats received either one of two doses of ALCAR or sham, or no treatment. Either 2 weeks or 2 months later, L4 and L5 dorsal root ganglia were harvested bilaterally, in accordance with the Animal (Scientific Procedures) Act 1986. Neuronal death was quantified with a combination of TUNEL [TdT (terminal deoxyribonucleotidyl transferase) uptake nick end labelling] and neuron counts obtained using the optical disector technique. Sham treatment had no effect upon neuronal death. ALCAR treatment caused a large reduction in the number of TUNEL-positive neurons 2 weeks after axotomy (sham treatment 33/group; low-dose ALCAR 6/group, P=0.132; high-dose ALCAR 3/group, P<0.05), and almost eliminated neuron loss (sham treatment 21%; low-dose ALCAR 0%, P=0.007; high-dose ALCAR 2%, P<0.013). Two months after axotomy the neuroprotective effect of high-dose ALCAR treatment was preserved for both TUNEL counts (no treatment five/group; high-dose ALCAR one/group) and neuron loss (no treatment 35%; high-dose ALCAR -4%, P<0.001). These results provide further evidence for the role of mitochondrial bioenergetic dysfunction in post-traumatic sensory neuronal death, and also suggest that acetyl-L-carnitine may be the first agent suitable for clinical use in the prevention of neuronal death after peripheral nerve trauma.

  • 159. Havton, Leif A
    et al.
    Hotson, John R
    Kellerth, Jan-Olof
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Correlation of median forearm conduction velocity with carpal tunnel syndrome severity.2007In: Clinical Neurophysiology, ISSN 1388-2457, Vol. 118, no 4, p. 781-5Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: Median nerve entrapment neuropathy at the wrist can be accompanied by slowed motor conduction within the forearm. Existing studies conflict regarding a correlation between the severity of the entrapment neuropathy in carpal tunnel syndrome (CTS) and slowing of median motor nerve conduction velocity (MNCV) in the forearm. Here, it was asked if there is a correlation between markers of CTS severity and median forearm MNCV, and if there is an explanation for the preceding conflicting results. METHODS: Median MNCV in the forearm was correlated with neurophysiologic markers of severity of a median neuropathy at the wrist in 91 hands from 64 patients with clinical and electrodiagnostic evidence of CTS. RESULTS: Median MNCV within the forearm segment was negatively correlated with the median nerve distal motor latency (r=-0.64, P<0.001, n=91) and positively correlated with the CMAP amplitude of the abductor pollicis brevis muscle (r=0.45, P<0.001, n=91). These correlations only occurred in patients with a prolonged median distal motor latency. Previous investigations that failed to find such correlations used variable or non-standardized methods or analyzed smaller numbers of patients. CONCLUSIONS: Slowing of median MNCV in the forearm is related to the severity of the entrapment of median motor fibers at the wrist. SIGNIFICANCE: Slowed forearm median MNCV can be a marker of motor nerve injury at the wrist.

  • 160. Havton, Leif A
    et al.
    Kellerth, Jan-Olof
    Umeå University, Faculty of Medicine, Integrative Medical Biology, Anatomy.
    Plasticity of lumbosacral monosynaptic reflexes after a ventral root transection injury in the adult cat.2004In: Experimental Brain Research, ISSN 0014-4819, Vol. 155, no 1, p. 111-4Article in journal (Refereed)
    Abstract [en]

    Injuries to spinal ventral roots may induce plastic changes in adjacent segmental reflex pathways. Earlier studies in the cat have demonstrated that a partial loss of target motoneurons, following a ventral root avulsion injury, induces a compensatory enhancement of monosynaptic reflexes in adjacent segments. Here, we studied electrophysiologically the effects of a primarily non-lethal motoneuron injury of lumbosacral ventral roots on monosynaptic reflexes in adjacent intact motoneurons in the adult cat. A unilateral L7 or a combined L7 and S1 ventral root transection was first performed. We next recorded bilaterally monosynaptic reflexes from the L6 and S1 ventral roots while stimulating the bilateral L6, L7 and S1 dorsal roots at 6 and 12 weeks postoperatively. We demonstrated a prominent strengthening of monosynaptic reflexes in the immediately adjacent spinal cord segments. The reflexes had almost doubled in size at 6 and 12 weeks postoperatively. Possible mechanisms and factors contributing to the reflex enhancement are discussed.

  • 161.
    Henriksson-Larsén, Karin
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Distribution, total number and size of different types of fibres in male and female skeletal muscles: an enzyme histochemical study of whole muscle cross-sections1984Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    In order to investigate the total number, relative proportions, size variations and distribution patterns of fibres of different types in human skeletal muscles, a technique was developed which allows whole muscle cross-sections to be collected and stained enzyme histochemically. Necropsy material was obtained from m. tibialis anterior and m. vastus lateralis of previously healthy young adults who had suffered sudden accidental deaths. The muscle specimens were extirpated within 72 hours post morten, frozen in liquid nitrogen, embedded in carboxymethylcellu- lose, sectioned and enzyme histochemically stained for myofibrillar ATPase in order to permit light microscopic identification of type 1 and type 2 muscle fibres.

    The present results show that there is a large variation in both the total number of fibres and the size of the whole muscle cross-sectional area between different individuals and, also, between different levels of the same muscle. The distribution of fibres of different types over the muscle cross-section was heterogeneous. Usually the relative proportion of type 2 fibres showed a peak along a medio- lateral line passing through the centre of the muscle cross-section. When comparing the left and right m. tibialis anterior of the same individual, one of the- muscles (usually the left one) was found to contain a larger number of fibres than the contralateral one. However, the pattern of distribution of fibres of different types was similar in the two muscles. The fibre sizes were also found to vary between different regions of the muscle cross-section. Both type 1 and type 2 fibres were significantly larger in the deep muscle region compared to the central or superficial sites. The mean fibre size as well as the total number of fibres correlated strongly with the whole muscle cross-sectional area. The female m. tibialis anterior contained fewer and smaller fibres than the corresponding male muscle, although the whole muscle cross-sectional area was of similar magnitude. The distribution of fibre types over the muscle cross-section differed somewhat between females and males. The variation in fibre sizes between different muscle sites was less pronounced in the females, but as in male muscles the type 2 fibres were always larger than the type 1 fibres.

    In conclusion, systematic variations in fibre type distribution and fibre size occurs over the muscle cross-section. The total number of fibres in the cross- section seems to vary with individual, sex, distance from muscle origin and left- right leg. The combination of fewer and smaller fibres in females compared to males leads to about 40 % smaller total muscle fibre cross-sectional area in female m. tibialis anterior. The results are discussed in relation to previous studies using muscle biopsy techniques. The possible contibution of variations in number, sizes or distribution patterns of muscle fibres to adaptation of muscle to varying functional demands is also discussed.

  • 162. Huisman, Elise S.
    et al.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Reno, Carol R.
    Hart, David A.
    Thornton, Gail M.
    Regional molecular and cellular differences in the female rabbit Achilles tendon complex: potential implications for understanding responses to loading2014In: Journal of Anatomy, ISSN 0021-8782, E-ISSN 1469-7580, Vol. 224, no 5, p. 538-547Article in journal (Refereed)
    Abstract [en]

    The aim of this study was: (i) to analyze the morphology and expression of extracellular matrix genes in six different regions of the Achilles tendon complex of intact normal rabbits; and (ii) to assess the effect of ovariohysterectomy (OVH) on the regional expression of these genes. Female New Zealand White rabbits were separated into two groups: (i) intact normal rabbits (n = 4); and (ii) OVH rabbits (n = 8). For each rabbit, the Achilles tendon complex was dissected into six regions: distal gastrocnemius (DG); distal flexor digitorum superficialis; proximal lateral gastrocnemius (PLG); proximal medial gastrocnemius; proximal flexor digitorum superficialis; and paratenon. For each of the regions, hematoxylin and eosin staining was performed for histological evaluation of intact normal rabbit tissues and mRNA levels for proteoglycans, collagens and genes associated with collagen regulation were assessed by real-time reverse transcription-quantitative polymerase chain reaction for both the intact normal and OVH rabbit tissues. The distal regions displayed a more fibrocartilaginous phenotype. For intact normal rabbits, aggrecan mRNA expression was higher in the distal regions of the Achilles tendon complex compared with the proximal regions. Collagen Type I and matrix metalloproteinase-2 expression levels were increased in the PLG compared to the DG in the intact normal rabbit tissues. The tendons from OVH rabbits had lower gene expressions for the proteoglycans aggrecan, biglycan, decorin and versican compared with the intact normal rabbits, although the regional differences of increased aggrecan expression in distal regions compared with proximal regions persisted. The tensile and compressive forces experienced in the examined regions may be related to the regional differences found in gene expression. The lower mRNA expression of the genes examined in the OVH group confirms a potential effect of systemic estrogen on tendon.

  • 163.
    Höckerfelt, U
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Franzén, L
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Forsgren, S
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P (NK1) receptor in relation to substance P innervation in rat duodenum after irradiation.2001In: Regulatory Peptides, ISSN 0167-0115, E-ISSN 1873-1686, Vol. 98, no 3, p. 115-26Article in journal (Refereed)
    Abstract [en]

    It has previously been shown that high dose of irradiation to the rat abdomen leads to an increased level of substance P (SP) in the duodenum. In the present study the pattern of distribution of NK1 receptors (NK1-R) in rat duodenum after irradiation (5-30 Gy), was examined at the same time-point (7 days) after irradiation, comparisons being made with the distribution of SP-innervation. Immunohistochemical methods were used. In controls, NK1-R-like immunoreactivity (-LI) was detected in epithelial cells, in cells in the region of the intestinal cells of Cajal within the deep muscular plexus (ICC-DMP), in neuronal cells in the myenteric plexus, and variably in granulocytes in the mucosa. Irradiation with 5-10 Gy did not lead to obvious changes in the pattern of NK1-R-LI. After irradiation with the highest doses (25-30 Gy), the mucosa was often gravely damaged, displaying granulation tissue. No epithelial NK1-R-LI was detected in this tissue, but was present in less affected mucosa after these doses. In the region of the ICC-DMP, in the myenteric plexus, and in granulocytes, NK1-R-LI was detected also after high dose irradiation. However, the degree of NK1-R-LI in the region of the ICC-DMP was somewhat lower than seen in controls and after low doses. SP-immunoreactive nerve fibers were present in the regions where NK1-R-LI was detected. These findings support a suggestion that an increased level of SP after irradiation may contribute to the dose-dependent gastrointestinal adverse effects that occur after radiotherapy.

  • 164.
    Höckerfelt, U
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Franzén, L
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Oncology.
    Norrgård, O
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Forsgren, Sture
    Early increase and later decrease in VIP and substance P nerve fiber densities following abdominal radiotherapy: a study on the human colon.2002In: International Journal of Radiation Biology, ISSN 0955-3002, E-ISSN 1362-3095, Vol. 78, no 11, p. 1045-53Article in journal (Refereed)
    Abstract [en]

    PURPOSE: The neuropeptides substance P (SP) and vasoactive intestinal peptide (VIP) mediate physiologic activities in the intestine, not least in relation to motility and inflammatory processes. Neuropeptides are up-regulated and play particular importance during tissue stress. This paper aims to quantify mucosal and smooth muscle SP, VIP and total innervation in human colon in short- and long-term perspectives after abdominal irradiation.

    MATERIALS AND METHODS: Colon specimens from 23 irradiated or non-irradiated patients were investigated with immunohistochemistry and computerized image analysis. Plasma levels of SP and VIP in 15 additional patients receiving radiotherapy were analyzed.

    RESULTS: At 4-7 days after irradiation (5 x 5 Gy), the overall innervation, and also VIP and SP nerve fiber densities, were increased in both mucosa and circular muscle layer. In contrast, 5-6 weeks as well as several years after irradiation, the VIP and SP nerve fiber densities were decreased. No peptide changes were revealed in plasma.

    CONCLUSIONS: The degree of VIP and SP intestinal innervation was increased after radiotherapy in the short-term perspective but it decreased in the long-term. In the short-term, SP may have pro-inflammatory and VIP anti-inflammatory effects and the peptides may have trophic effects and be related to the occurrence of motor changes. It cannot be excluded that the decrease in VIP and SP neuronal supply seen in the long-term may contribute to intestinal malfunction.

  • 165.
    Höglund Åberg, Carola
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Johansson, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Aggregatibacter actinomycetemcomitans: virulence of its leukotoxin and association with aggressive periodontitis2015In: Virulence, ISSN 2150-5608, Vol. 6, no 3, p. 188-195Article, review/survey (Refereed)
    Abstract [en]

    Periodontitis is an infection-induced inflammatory disease that causes loss of the tooth supporting tissues. Much focus has been put on comparison of the microbial biofilm in the healthy periodontium with the diseased one. The information arising from such studies is limited due to difficulties to compare the microbial composition in these two completely different ecological niches. A few longitudinal studies have contributed with information that makes it possible to predict which individuals who might have an increased risk of developing aggressive forms of periodontitis, and the predictors are either microbial or/and host-derived factors. The most conspicuous condition that is associated with disease risk is the presence of Aggregatibacter actinomycetemcomitans at the individual level. This Gram-negative bacterium has a great genetic variation with a number of virulence factors. In this review we focus in particular on the leukotoxin that, based on resent knowledge, might be one of the most important virulence factors of A. actinomycetemcomitans.

  • 166.
    Jergović, D
    et al.
    University of Linköping.
    Stål, Per
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lidman, D
    University of Linköping.
    Lindvall, B
    University of Linköping.
    Hildebrand, C
    University of Linköping.
    Changes in a rat facial muscle after facial nerve injury and repair2001In: Muscle and Nerve, ISSN 0148-639X, E-ISSN 1097-4598, Vol. 24, no 9, p. 1202-1212Article in journal (Refereed)
    Abstract [en]

    This study describes changes in a rat facial muscle innervated by the mandibular and buccal facial nerve branches 4 months after nerve injury and repair. The following groups were studied: (A) normal controls; (B) spontaneous reinnervation by collateral or terminal sprouting; (C) reinnervation after surgical repair of the mandibular branch; and (D) chronic denervation. The normal muscle contained 1200 exclusively fast fibers, mainly myosin heavy chain (MyHC) IIB fibers. In group B, fiber number and fiber type proportions were normal. In group C, fiber number was subnormal. Diameters and proportions of MyHC IIA and hybrid fibers were above normal. The proportion of MyHC IIB fibers was subnormal. Immediate and delayed repair gave similar results with respect to the parameters examined. Group D rats underwent severe atrophic and degenerative changes. Hybrid fibers prevailed. These data suggest that spontaneous regeneration of the rat facial nerve is superior to regeneration after surgical repair and that immediacy does not give better results than moderate delay with respect to surgical repair. Long delays are shown to be detrimental.

  • 167. Jivan, Sharmila
    et al.
    Kumar, N
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kay, Simon
    The influence of pre-surgical delay on functional outcome after reconstruction of brachial plexus injuries.2009In: Journal of plastic, reconstructive & aesthetic surgery : JPRAS, ISSN 1878-0539, Vol. 62, no 4, p. 472-479Article in journal (Refereed)
    Abstract [en]

    It has been proposed that delayed surgery after traumatic brachial plexus injury may adversely affect functional outcome. In this study the influence of pre-surgical delay on the outcome of brachial plexus reconstruction was examined retrospectively. All patients who underwent surgery for traumatic brachial plexus injury in the Leeds Plastic and Reconstructive Surgery unit (UK), between 1987 and 2002, were identified. Of the 110 patients identified, 27 had nerve grafting to the upper trunk to restore shoulder and biceps muscle function. Postoperative functional outcome was evaluated in this subgroup of patients. The 27 patients were divided into three groups: surgery <2 weeks (n=10), 2 weeks to 2 months (n=10) and >2 months (n=7) following injury. The efficacy of nerve grafting was correlated to pre- and postoperative biceps strength, which was assessed using the British Medical Research Council (MRC) Motor Grading Scale. In all patients the preoperative elbow grade was M0. The results showed that in the <2 weeks, 2 weeks-2 months and >2 months delay groups, the mean postoperative elbow MRC grades were 4.2+/-SD 1.0, 3.8+/-SD 0.8 and 1.1+/-SD 1.7, respectively. Functionally better results were obtained with early surgery. When surgery was delayed beyond 2 months there was no significant difference between mean pre- and postoperative elbow grades. We therefore believe that early exploration and reconstruction of adult traumatic brachial plexus injuries minimises the pernicious adverse effects of delay attributable to recent findings of the neurobiological effects of axonal damage.

  • 168. Jivan, Sharmila
    et al.
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of delayed nerve repair on neuronal survival and axonal regeneration after seventh cervical spinal nerve axotomy in adult rats.2006In: Experimental Brain Research, ISSN 0014-4819, E-ISSN 1432-1106, Vol. 170, no 2, p. 245-254Article in journal (Refereed)
    Abstract [en]

    It has been proposed clinically that delayed surgery after traumatic brachial plexus injury may adversely affect functional outcome. In the present experimental study the neuroprotective and growth-promoting effects of early and delayed nerve grafting following proximal seventh cervical spinal nerve (C7) axotomy were examined. The ventral branch of C7 spinal nerve was transected and axons projecting out of the proximal nerve stump were labelled with Fast Blue (FB). At the same time, the biceps brachii muscle was denervated by transecting the musculocutaneous nerve at its origin. Neuronal survival and muscle atrophy were then assessed at 1, 4, 8 and 16 weeks after permanent axotomy. In the experimental groups, a peripheral nerve graft was interposed between the transected C7 spinal nerve and the distal stump of the musculocutaneous nerve at 1 week [early nerve repair (ENR)] or 8 weeks [delayed nerve repair (DNR)] after axotomy. Sixteen weeks after nerve repair had been performed, a second tracer Fluoro-Ruby (FR) was applied distal to the graft to assess the efficacy of axonal regeneration. Counts of FB-labelled neurons revealed that axotomy did not induce any significant cell loss at 4 weeks, but 15% of motoneurons and 32% of sensory neurons died at 8 weeks after injury. At 16 weeks, the amount of cell loss in spinal cord and dorsal root ganglion (DRG) reached 29 and 50%, respectively. Both ENR and DNR prevented retrograde degeneration of spinal motoneurons and counteracted muscle atrophy, but failed to rescue sensory neurons. Due to substantial cell loss at 8 weeks, the number of FR-labelled neurons after DNR was significantly lower when compared to ENR. However, the proportion of regenerating neurons among surviving motoneurons and DRG neurons remained relatively constant indicating that neurons retained their regenerative capacity after prolonged axotomy. The results demonstrate that DNR could protect spinal motoneurons and reduce muscle atrophy, but had little effect on sensory DRG neurons. However, the efficacy of neuroprotection and axonal regeneration will be significantly affected by the amount of cell loss already presented at the time of nerve repair.

  • 169.
    Johansson, Bengt
    et al.
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Mörner, Stellan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Waldenström, Anders
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Medicine.
    Stål, Per
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Myocardial capillary supply is limited in hypertrophic cardiomyopathy: a morphological analysis2008In: International Journal of Cardiology, ISSN 0167-5273, E-ISSN 1874-1754, Vol. 126, no 2, p. 252-257Article in journal (Refereed)
    Abstract [en]

    OBJECTIVE: To clarify the morphological basis of the limited coronary reserve in hypertrophic cardiomyopathy (HCM). BACKGROUND: Some of the symptoms in Hypertrophic cardiomyopathy (HCM), such as chest pain, dyspnea and arrhythmia, may be explained by myocardial ischemia. Many patients with HCM are known to exhibit these symptoms in the absence of atherosclerosis in the major coronary vessels. Decreased myocardial perfusion has been demonstrated in HCM, however, little is known about the myocardial capillary morphology in this disease. METHODS: Using immunohistochemistry and morphometry, we analysed capillaries and cardiomyocytes in myectomy specimens from 5 patients with HCM with moderate hypertrophy and left ventricular outflow tract obstruction and in 5 control hearts. RESULTS: The number of capillaries per cardiomyocyte (p<0.009) and number of capillaries per cardiomyocyte area unit, reflecting cardiomyocyte mass (p=0.009), were lower in individuals with HCM, i.e. indicating loss of capillaries. In HCM, the capillary density was 33% lower (p<0.05). CONCLUSIONS: Our morphologic findings show that the capillary supply, and thus the coronary reserve, is impaired in HCM with moderate hypertrophy and left ventricular outflow tract obstruction. These data may partly explain the limitation of myocardial perfusion in HCM, which is associated with worse prognosis. Furthermore, we present evidence of actual loss of myocardial capillaries in HCM and a defective capillary growth.

  • 170.
    Johansson, Cecilia
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Jonsson, Mari
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Marttila, Marko
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Persson, David
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Fan, Xiao-Long
    Skog, Johan
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Frängsmyr, Lars
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wadell, Göran
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Arnberg, Niklas
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Adenoviruses use lactoferrin as a bridge for CAR-independent binding to and infection of epithelial cells2007In: Journal of Virology, ISSN 0022-538X, E-ISSN 1098-5514, Vol. 81, no 2, p. 954-963Article in journal (Refereed)
    Abstract [en]

    Most adenoviruses bind to the coxsackie- and adenovirus receptor (CAR). Surprisingly, CAR is not expressed apically on polarized cells and is thus not easily available to viruses. Consequently, alternative mechanisms for entry of coxsackievirus and adenovirus into cells have been suggested. We have found that tear fluid promotes adenovirus infection, and we have identified human lactoferrin (HLf) as the tear fluid component responsible for this effect. HLf alone was found to promote binding of adenovirus to epithelial cells in a dose-dependent manner and also infection of epithelial cells by adenovirus. HLf was also found to promote gene delivery from an adenovirus-based vector. The mechanism takes place at the binding stage and functions independently of CAR. Thus, we have identified a novel binding mechanism whereby adenovirus hijacks HLf, a component of the innate immune system, and uses it as a bridge for attachment to host cells.

  • 171.
    Johansson, Malin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Jönsson, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Norrgård, Orjan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    New aspects concerning ulcerative colitis and colonic carcinoma: analysis of levels of neuropeptides, neurotrophins, and TNFalpha/TNF receptor in plasma and mucosa in parallel with histological evaluation of the intestine2008In: Inflammatory Bowel Diseases, ISSN 1078-0998, E-ISSN 1536-4844, Vol. 14, no 10, p. 1331-1340Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The levels of neuropeptides, neurotrophins, and TNFalpha (TNFalpha)/TNF receptor in plasma and mucosa for patients with ulcerative colitis (UC) and colonic carcinoma, and concerning plasma also for healthy controls, were examined. Moreover, the relationships between the different substances and the influence of mucosal derangement on the levels were analyzed.

    METHODS: The levels of VIP, SP, CGRP, BDNF, NGF, and TNFalpha/TNF receptor 1 were measured using ELISA/EIA.

    RESULTS: Patients with UC demonstrated the highest levels of all analyzed substances in plasma, with the exception of BDNF. However, there were differences within the UC group, patients treated with corticosteroids, and/or nonsteroid antiinflammatory/immunosuppressive treatment having higher plasma levels than those not given these treatments. Patients with colonic carcinoma showed higher SP and TNF receptor 1 levels in plasma compared to healthy controls. Concerning mucosa, the levels of almost all analyzed substances were elevated for patients with UC compared to noncancerous mucosa of colonic carcinoma patients. There were correlations between many of the substances in both plasma and mucosa, especially concerning the 3 neuropeptides examined. There were also marked associations with mucosa derangement.

    CONCLUSIONS: Via analysis of correlations for the respective patients and via comparisons between the different patient groups, new and original information was obtained. Interestingly, the degree of mucosal affection was markedly correlated with tissue levels of the substances and the treatments were found to be of importance concerning plasma but not tissue levels of these. Combined plasma analysis of neuropeptides, neurotrophins, and TNF receptor 1 may help to distinguish UC and colonic carcinoma patients.

  • 172.
    Johansson, Malin
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Norrgård, Örjan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Study of expression patterns and levels of neurotrophins and neurotrophin receptors in ulcerative colitis2007In: Inflammatory Bowel Diseases, ISSN 1078-0998, E-ISSN 1536-4844, Vol. 13, no 4, p. 398-409Article in journal (Refereed)
    Abstract [en]

    Background: Neurotrophins may be involved in ulcerative colitis (UC). Yet, it is unclear whether if their effects should be blocked.

    Methods: In this study, the neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and their receptors were examined by immunohistochemistry, ELISA, and RT-PCR.

    Results: BDNF immunoreaction was detected in nerve structures in particular, and NGF immunoreaction was detected in lamina propria cells. Cellular NGF immunoreaction was generally observed to be higher in the mucosa of UC patients than in the controls. In addition, UC patients demonstrated significantly higher p75 immunoreaction (P = 0.010) in lamina propria cells. The controls expressed significantly higher BDNF immunoreaction in the nerve structures than did UC patients (P = 0.000). However, the UC group showed marked interindividual variation in expression of neurotrophins and neurotrophin receptors. This included variation at the mRNA level for NGF. Differences with the controls were most pronounced in UC specimens demonstrating great infiltration of inflammatory cells and marked tissue derangement. Corticosteroid treatment seemed to affect neurotrophin production in lamina propria cells but not in nerve structures. These observations demonstrate that up-regulation and down-regulation of neurotrophins occur in different structural components in response to the disease process. Massive inflammation seemed to be correlated with decreased neurotrophin immunoreaction in nerve structures, but there was a tendency toward increased neurotrophin production in lamina propria cells.

    Conclusions: Our study shows that UC patients are not a uniform group in their expression of neurotrophins, a fact that should be considered when discussing therapeutic interventions.

  • 173.
    Jonsson, Frida
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Byström, Berit
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Davidson, Alice E.
    UCL Institute of Ophthalmology, London, UK.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kellgren, Therese
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Tuft, Stephen J.
    UCL Institute of Ophthalmology, London, UK; Moorfields Eye Hospital, London, UK.
    Koskela, Timo
    Koskelas Eye Clinic, Umeå, Sweden.
    Ryden, Patrik
    Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
    Sandgren, Ola
    Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Hardcastle, Alison J.
    UCL Institute of Ophthalmology, London, UK.
    Golovleva, Irina
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
    Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED)2015In: Human Mutation, ISSN 1059-7794, E-ISSN 1098-1004, Vol. 36, no 4, p. 463-473Article in journal (Refereed)
    Abstract [en]

    Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)-like disease that is common in northern Sweden. Whole-exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED-like family linked to a locus on chromosome 10q23-q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre-mRNA splicing and is highly likely to be pathogenic. Bi-allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain-of-function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.

  • 174.
    Jonsson, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Linköping University.
    Norrgard, Orjan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Epithelial Expression of Vasoactive Intestinal Peptide in Ulcerative Colitis: Down-Regulation in Markedly Inflamed Colon2012In: Digestive Diseases and Sciences, ISSN 0163-2116, E-ISSN 1573-2568, Vol. 57, no 2, p. 303-310Article in journal (Refereed)
    Abstract [en]

    Vasoactive intestinal peptide (VIP) has a number of important effects in intestinal physiology and pathology, including in ulcerative colitis (UC). The expression patterns of the predominant VIP receptor in the mucosa (the VPAC1 receptor) are unknown for the mucosa in UC. It is assumed that the sources of VIP in the intestine are the innervation and the inflammatory cells. The VIP and VPAC1 receptor expression patterns in the epithelial layer of UC and non-UC patients were examined in the present study. The influence of marked inflammation of the mucosa was evaluated. Specimens of the human colon, including the colon of UC patients, were examined concerning expressions of VIP and VPAC1 receptor, focusing on the epithelial layer. Immunohistochemistry and in situ hybridization were utilized. There were VIP mRNA reactions and also marked VPAC1 receptor immunoreactions in the normal and slightly/moderately affected epithelium. VIP mRNA reactions were not detected and VPAC1 immunoreactions were minimal in response to marked mucosal derangement. The findings suggest that there is a local production of VIP in the epithelial cells in normal and slightly/moderately inflamed mucosa but not in severely inflamed mucosa. Furthermore, a marked downregulation in VPAC1 receptor expressions occurs in the epithelium in severe UC. Based on the knowledge that VIP can have trophic, healing and anti-inflammatory effects, it is likely that the decrease in VIP mRNA and VPAC1 receptor reactions seen in severely affected mucosa in UC may be associated with adverse effects on intestinal function.

  • 175.
    Jonsson, Samuel
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Rebecca
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    McGrath, Aleksandra M
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Effect of delayed peripheral nerve repair on nerve regeneration, Schwann cell function and target muscle recovery2013In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 8, no 2, article id e56484Article in journal (Refereed)
    Abstract [en]

    Despite advances in surgical techniques for peripheral nerve repair, functional restitution remains incomplete. The timing of surgery is one factor influencing the extent of recovery but it is not yet clearly defined how long a delay may be tolerated before repair becomes futile. In this study, rats underwent sciatic nerve transection before immediate (0) or 1, 3, or 6 months delayed repair with a nerve graft. Regeneration of spinal motoneurons, 13 weeks after nerve repair, was assessed using retrograde labeling. Nerve tissue was also collected from the proximal and distal stumps and from the nerve graft, together with the medial gastrocnemius (MG) muscles. A dramatic decline in the number of regenerating motoneurons and myelinated axons in the distal nerve stump was observed in the 3- and 6-months delayed groups. After 3 months delay, the axonal number in the proximal stump increased 2-3 folds, accompanied by a smaller axonal area. RT-PCR of distal nerve segments revealed a decline in Schwann cells (SC) markers, most notably in the 3 and 6 month delayed repair samples. There was also a progressive increase in fibrosis and proteoglycan scar markers in the distal nerve with increased delayed repair time. The yield of SC isolated from the distal nerve segments progressively fell with increased delay in repair time but cultured SC from all groups proliferated at similar rates. MG muscle at 3- and 6-months delay repair showed a significant decline in weight (61% and 27% compared with contra-lateral side). Muscle fiber atrophy and changes to neuromuscular junctions were observed with increased delayed repair time suggestive of progressively impaired reinnervation. This study demonstrates that one of the main limiting factors for nerve regeneration after delayed repair is the distal stump. The critical time point after which the outcome of regeneration becomes too poor appears to be 3-months.

  • 176.
    Jönsson, Maria
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    The neuronal and non-neuronal substance P, VIP and cholinergic systems in the colon in ulcerative colitis2009Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Ulcerative colitis (UC) is a chronic relapsing inflammatory bowel disease. Neuropeptides, especially vasoactive intestinal peptide (VIP) and substance P (SP), have long been considered to play key roles in UC. Among other effects, these neuropeptides have trophic and growth-modulating as well as wound-healing effects. Furthermore, whilst VIP has anti-inflammatory properties, SP has pro-inflammatory effects. It is generally assumed that the main source of SP and VIP in the intestine is the tissue innervation. It is not known whether or not they are produced in the epithelial layer. The details concerning the expressions of their receptors in UC are also, to a great extent, unclear. Apart from the occurrence of peptidergic systems in the intestine, there are also neuronal as well as non-neuronal cholinergic systems. The pattern concerning the latter is unknown with respect to UC.

    The studies in this thesis aimed to investigate the expression of SP and VIP and their major receptors (NK-1R and VPAC1) in UC colon, compared to non-UC colon. The main emphasis was devoted to the epithelium. A second aim was to examine for levels of these neuropeptides in blood plasma in UC. Another aim was to examine for the non-neuronal cholinergic system in UC, thus, to investigate whether there is acetylcholine production outside nerves in the UC colon. Methods used in the thesis were immunohistochemistry, in situ hybridization, enzyme immunosorbent assay, and in vitro receptor autoradiography.

    For the first time, mRNA for VIP and SP has here been found in the colonic epithelium. That was especially noted in UC mucosa showing a rather normal morphology, and in non-UC mucosa. Marked derangement of the mucosa was found to lead to a distinct decrease in VIP binding, and also a decrease in the expression level of VIP receptor VPAC1 in the epithelium. In general, there was an upregulation of the SP receptor NK-1R in the epithelium when the mucosa was deranged. The plasma levels of SP and VIP were higher for UC patients compared to healthy controls. There were marked correlations between the levels of the peptides in plasma, their levels in the mucosa and the degree of mucosal derangement/inflammation. A pronounced nonneuronal cholinergic system was found in both UC and non-UC colon. Certain changes occurred in this system in response to inflammation/derangement in UC. The present study shows unexpectedly that expressions for VIP and SP are not only related to the nerve structures and the inflammatory cells. The downregulation of VPAC1 expression, and the tendencies of upregulation of NK-1R expression levels when there is marked tissue derangement, may be a drawback for the intestinal function. The study also shows that there is a marked release of neuropeptides to the bloodstream in parallel with a marked derangement of the mucosa in UC. The cholinergic effects in the UC colon appear not only to be associated with nerverelated effects, but also effects of acetylcholine produced in local non-neuronal cells. The thesis shows that local productions for not only acetylcholine, but also SP and VIP, occur to a larger extent than previously considered.

  • 177.
    Jönsson, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Norrgård, Örjan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Presence of mRNA for VIP and Substance P and presence of VPAC1 and NK-1 receptor expressions in the colonic epithelium of man: changed pattern in ulcerative colitisManuscript (Other academic)
    Abstract [en]

     

    The neuropeptides vasoactive intestinal peptide (VIP) and substance P (SP) are considered to be important in ulcerative colitis (UC). It is generally assumed that the main source of VIP and SP in the intestine is the innervation. There is no information concerning whether or not they are produced by cells in the epithelial layer. Concerning UC, there is also a lack of information concerning the VIP-receptor VPAC1 in the epithelium. In the present study, UC and non-UC colon was examined concerning expressions of VIP, SP, VPAC1 and the SP-preferred receptor, neurokinin-1 (NK-1R). Both immunohistochemistry and in situ hybridization were applied. mRNA expression for both VIP and SP were observed in the epithelium. The mRNA reactions were seen in normal and little/moderately affected mucosa. There were very marked VPAC1 immunoreactions in the epithelium, in non-UC mucosa and in little affected UC mucosa. A decrease in VPAC1 immunoreactions was noted in the epithelium in markedly affected UC mucosa. Existence of VIP immunoreaction, VIP mRNA, VPAC1 immunoreaction, SP mRNA, NK-1R immunoreaction and Substance P receptor (TACR1) mRNA was shown for cells in lamina propria and submucosa. The present study shows unexpectedly that mRNA for both VIP and SP are not only expressed in neuronal perikarya and lamina propria and submucosal cells but also in the colonic epithelium, and that marked changes in VPAC1 receptor expressions occur for this layer in severe UC. It is tentative to speculate that autocrine/paracrine VIP and SP effects may occur within the epithelium. The decrease in VPAC1 receptor reactions seen in severely UC affected mucosa may be a drawback for the intestinal function.

     

  • 178.
    Jönsson, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Norrgård, Örjan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery. Kirurgi.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P and the neurokinin-1 receptor in relation to eosinophilia in ulcerative colitis2005In: Peptides, ISSN 0196-9781, E-ISSN 1873-5169, Vol. 26, no 5, p. 799-814Article in journal (Refereed)
    Abstract [en]

    Substance P (SP) has been implicated in the pathophysiology of ulcerative colitis (UC) and it has been suggested that blocking of its effect would be advantageous in this disease. Eosinophils have also been implicated in the pathophysiology of UC. In the present study, specimens from the sigmoid colon of UC patients were investigated by the use of antisera against SP and the neurokinin-1 receptor (NK-1R) and staining for demonstration of eosinophils. The degrees of SP innervation and NK-1R immunoreaction, as well as the levels of eosinophil infiltration, varied between different patients. Interestingly, NK-1R immunoreaction in the epithelium was often seen to be the most marked where there were numerous eosinophils in the underlying mucosa and where the mucosa showed a marked morphologic derangement. The observations suggest that there are marked fluctuations in effects of SP and eosinophils during the disease. The infiltrating eosinophils may be involved in the destruction of the mucosal tissue. Furthermore, for the majority of cases where there is marked derangement of the mucosa, it is apparent that there is an upregulation of the NK-1 receptor in the epithelium in parallel with the infiltration of the eosinophils.

  • 179.
    Kadi, F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Ahlgren, Christina
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation.
    Waling, Kerstin
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation.
    Sundelin, Gunnevi
    Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of different training programs on the trapezius muscle of women with work-related neck and shoulder myalgia2000In: Acta Neuropathologica, ISSN 0001-6322, E-ISSN 1432-0533, Vol. 100, no 3, p. 253-8Article in journal (Refereed)
    Abstract [en]

    The aim of this study was to examine the effects of training on the structural characteristics of the trapezius muscle in women with work-related trapezius myalgia. Muscle biopsies were taken before and after 10 weeks of three different training programs (strength, endurance and coordination). Enzyme-immunohistochemical analysis was performed to assess muscle fibre types, fibre area, capillary supply and cytochrome c oxidase (COX) activity. There was an increase in the proportion of type IIA fibres in strength trained group (P < 0.05). Strength training elicited a preferential increase in the area of type II fibres (P < 0.05); both strength and endurance programs induced an increase in the number of capillaries around type I and IIA muscle fibres. Finally, all training programs induced a decrease in the proportion of COX-negative fibres. In conclusion, the trapezius muscle of women with neck and shoulder myalgia is characterised by a great potential of adaptation to physical exercise over a period of 10 weeks. The significant changes in the number of capillaries and the specific changes induced by training at the level of muscle fibres might well explain the improvement of muscle function.

  • 180.
    Kadi, F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Concomitant increases in myonuclear and satellite cell content in female trapezius muscle following strength training.2000In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 113, no 2, p. 99-103Article in journal (Refereed)
    Abstract [en]

    A skeletal muscle fibre maintains its cytoplasmic volume by means of hundreds of myonuclei distributed along its entire length. Therefore it is hypothesised that changes in fibre size would involve modifications in myonuclear number. In this study, we have examined whether 10 weeks of strength training can induce changes in the number of myonuclei and satellite cells in female trapezius muscles. Biopsies were taken pre- and posttraining from the upper part of the descending trapezius muscle of nine subjects. Muscle samples were analysed for fibre area and myonuclear and satellite cell number using immunohistochemistry. There was a 36% increase in the cross-sectional area of muscle fibres. The hypertrophy of muscle fibres was accompanied by an approximately 70% increase in myonuclear number and a 46% increase in the number of satellite cells. Myonuclei number was positively correlated to satellite cell number indicating that a muscle with an increased concentration of myonuclei will contain a correspondingly higher number of satellite cells. The acquisition of additional myonuclei appears to be required to support the enlargement of multinucleated muscle cells following 10 weeks of strength training. Increased satellite cell content suggests that mitotic divisions of satellite cells produced daughter cells that became satellite cells.

  • 181.
    Kadi, Fawzi
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Bonnerud, P
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Eriksson, A
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Thornell, Lars-Eric
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The expression of androgen receptors in human neck and limb muscles: effects of training and self-administration of androgenic-anabolic steroids2000In: Histochemistry and Cell Biology, ISSN 0948-6143, E-ISSN 1432-119X, Vol. 113, no 1, p. 25-29Article in journal (Refereed)
    Abstract [en]

    The purpose of this study was to investigate the immunohistochemical expression of androgen receptors (AR) in human vastus lateralis and trapezius muscles and to determine whether long-term strength training and self-administration of androgenic-anabolic steroids are accompanied by changes in AR content. Biopsy samples were taken from eight high-level power-lifters (P), nine high-level power-lifters who used anabolic steroids (PAS) and six untrained subjects (U). Myonuclei and AR were visualised in cross-sections stained with the monoclonal antibody against AR and 4',6-diamidino-2-phenylindole. The proportion of AR-containing myonuclei per fibre cross-section was higher in the trapezius than in the vastus lateralis (P<0.05). In the trapezius, the proportion of AR-containing myonuclei was higher in P compared to U and in PAS compared to both P and U (P<0. 05). On the contrary, in the vastus lateralis, there were no differences in AR content between the three groups. Myonuclear number in both muscles was higher in P compared to U and in PAS compared to both P and U (P<0.05). In conclusion, AR content differs greatly between human neck and limb muscles. Moreover, the regulation of AR-containing myonuclei following training and self-administration of androgenic-anabolic steroids is muscle dependent.

  • 182.
    Kalbermatten, Daniel
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Nerve gap repair by the use of artificial conduits and cultured cells2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Peripheral nerve injuries are often associated with loss of nerve tissue and require autologous nerve grafts to provide a physical substrate for axonal growth. This thesis investigates the use of fibrin as both a tubular conduit to guide nerve regeneration and also as a matrix material to suspend various regenerative cell types within/on poly-3-hydroxybutyrate (PHB) nerve conduits. Adipose derived stem cells (ASC) are found in abundant quantities. In this thesis the ability of rat ASC to differentiate into Schwann cells was determined and a preliminary study of the neurotrophic potential of human ASC was also investigated.

    Rat sciatic nerve axotomy was performed proximally in the thigh to create a 10-mm gap between the nerve stumps and the gap was bridged using the various conduits.  At early time points the nerve grafts were harvested and investigated for axonal and Schwann cell markers.  After 16 weeks the regenerative response from sensory and motor neurons was also evaluated following retrograde labelling with Fast Blue fluorescent tracer. Stem cells were treated with a mixture of glial growth factors and after 2 weeks in vitro the expression of Schwann cell markers was analysed by immunocytochemistry and Western blotting.  ASC were cocultured with the NG108-15 neuronal cell line to determine their ability to promote neurite outgrowth.  Human ASC were isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures.  RT-PCR was used to investigate the expression of neurotrophic factors.

    Immunohistochemistry showed a superior nerve regeneration distance in the fibrin conduit compared with PHB. The fibrin conduit promoted regeneration of 60% of sensory neurones and 52% of motor neurones when compared with an autograft group at 16 weeks. The total number of myelinated axons in the distal nerve stump in the fibrin-conduit group reached 86% of the graft and the weight of gastrocnemius and soleus muscles recovered to 82% and 89% of the controls, respectively. In vitro studies showed that rat ASC could be differentiated to a Schwann cell phenotype. These treated cells enhanced both the number of NG108-15 cells expressing neurites and neurite length. In the same coculture model system, human superficial fat layer ASC induced significantly enhanced neurite outgrowth when compared with the deep layer fat cells. RT-PCR analysis showed ASC isolated from both layers expressed neurotrophic factors.

    These results indicate that a tubular fibrin conduit can be used to promote neuronal regeneration following peripheral nerve injury. There was also a beneficial effect of using a fibrin matrix to seed cells within/on PHB conduits which should ultimately lead to improved functional recovery following nerve injury.  There might also be an advantage to use a simple strip of PHB rather than a conventional tube-like structure implying that single fascicle nerve grafting could be advantageous for nerve repair.  The results of in vitro experiments indicate adipose tissue contains a pool of regenerative stem cells which can be differentiated to a Schwann cell phenotype and given that human ASC express a range of neurotrophic factors they are likely to be of clinical benefit for treatment of peripheral nerve injuries.

  • 183.
    Kalbermatten, Daniel F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Erba, P
    Mahay, Daljeet
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Pierer, Gerhard
    Terenghi, Giorgio
    Schwann cell strip for peripheral nerve repair2008In: Journal of Hand Surgery - British and European Volume, ISSN 0266-7681, E-ISSN 1532-2211, Vol. 33, no 5, p. 587-594Article in journal (Refereed)
    Abstract [en]

    Many strategies have been investigated to provide an ideal substitute to treat a nerve gap injury. Initially, silicone conduits were used and more recently conduits fabricated from natural materials such as poly-3-hydroxybutyrate (PHB) showed good results but still have their limitations. Surgically, a new concept optimising harvested autologous nerve graft has been introduced as the single fascicle method. It has been shown that a single fascicle repair of nerve grafting is successful. We investigated a new approach using a PHB strip seeded with Schwann cells to mimic a small nerve fascicle. Schwann cells were attached to the PHB strip using diluted fibrin glue and used to bridge a 10-mm sciatic nerve gap in rats. Comparison was made with a group using conventional PHB conduit tubes filled with Schwann cells and fibrin glue. After 2 weeks, the nerve samples were harvested and investigated for axonal and Schwann cell markers. PGP9.5 immunohistochemistry showed a superior nerve regeneration distance in the PHB strip group versus the PHB tube group (> 10 mm, crossed versus 3.17+/- 0.32 mm respectively, P<0.05) as well as superior Schwann cell intrusion (S100 staining) from proximal (> 10 mm, crossed versus 3.40+/- 0.36 mm, P<0.01) and distal (> 10 mm, crossed versus 2.91+/- 0.31 mm, P<0.001) ends. These findings suggest a significant advantage of a strip in rapidly connecting a nerve gap lesion and imply that single fascicle nerve grafting is advantageous for nerve repair in rats.

  • 184.
    Kalbermatten, Daniel F
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Mahay, Daljeet
    Mantovani, Cristina
    Pettersson, Jonas
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Raffoul, W
    Balcin, H
    Pierer, G
    Terenghi, Giorgio
    Fibrin matrix for suspension of regenerative cells in an artificial nerve conduit2008In: Journal of plastic, reconstructive and aesthetic surgery, ISSN 1878-0539, Vol. 61, no 6, p. 669-675Article in journal (Refereed)
    Abstract [en]

    Peripheral nerve injury presents with specific problems of neuronal reconstructions, and from a clinical viewpoint a tissue engineering approach would facilitate the process of repair and regeneration. We have previously used artificial nerve conduits made from bioresorbable poly-3-hydroxybutyrate (PHB) in order to refine the ways in which peripheral nerves are repaired and reconnected to the target muscles and skin. The addition of Schwann cells (SC) or differentiated mesenchymal stem cells (dMSC) to the conduits enhances regeneration. In this study, we have used a matrix based on fibrin (Tisseel) to fill optimally the nerve-conduits with cells. In vitro analysis showed that both SC and MSC adhered significantly better to PHB in the presence of fibrin and cells continued to maintain their differentiated state. Cells were more optimally distributed throughout the conduit when seeded in fibrin than by delivery in growth medium alone. Transplantation of the nerve conduits in vivo showed that cells in combination with fibrin matrix significantly increased nerve regeneration distance (using PGP9.5 and S100 distal and proximal immunohistochemistry) when compared with empty PHB conduits. This study shows the beneficial combinatory effect of an optimised matrix, cells and conduit material as a step towards bridging nerve gaps which should ultimately lead to improved functional recovery following nerve injury.

  • 185.
    Kalbermatten, Daniel F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pettersson, Jonas
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Pierer, Gerhard
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Terenghi, Giorgio
    New fibrin conduit for peripheral nerve repair2009In: Journal of reconstructive microsurgery, ISSN 0743-684X, E-ISSN 1098-8947, Vol. 25, no 1, p. 27-33Article in journal (Refereed)
    Abstract [en]

    An ideal substitute to treat a nerve gap has not been found. Initially, silicone conduits were employed. Later, conduits were fabricated from collagen or polyesters carbonates. More recently, it has been shown that a bioresorbable material, poly-3-hydroxybutyrate (PHB), can enhance nerve repair. The present investigation shows the use of fibrin as a conduit to guide nerve regeneration and bridge nerve defects. In this study we prepared and investigated a novel nerve conduit made from fibrin glue. Using a rodent sciatic nerve injury model (10-mm gap), we compared the extent of nerve regeneration through the new fibrin conduits versus established PHB conduits. After 2 and 4 weeks, conduits containing proximal and distal stumps were harvested. We evaluated the initial axon and Schwann cell stimulation using immunohistochemistry. The conduits presented full tissue integration and were completely intact. Axons crossed the gap after 1 month. Immunohistochemistry using the axonal marker PGP 9.5 showed a superior nerve regeneration distance in the fibrin conduit compared with PHB (4.1 mm versus 1.9 mm). Schwann cell intrusion (S100 staining) was similarly enhanced in the fibrin conduits, both from the proximal (4.2 mm versus 2.1 mm) and distal ends (3.2 mm versus 1.7 mm). These findings suggest an advantage of the new fibrin conduit for the important initial phase of peripheral nerve regeneration. The use of fibrin glue as a conduit is a step toward a usable graft to bridge peripheral nerve lesions. This might be clinically interesting, given the widespread acceptance of fibrin glue among the surgical community.

  • 186.
    Kalbermatten, Daniel F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Schaakxs, Dominique
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat2011In: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 344, no 2, p. 251-260Article in journal (Refereed)
    Abstract [en]

    New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.

  • 187.
    Kalbermatten, Daniel F
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wettstein, Reto
    vonKanel, Oliver
    Erba, Paolo
    Pierer, Gerhard
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Haug, Martin
    Sensate lateral arm flap for defects of the lower leg.2008In: Annals of plastic surgery, ISSN 1536-3708, Vol. 61, no 1, p. 40-6Article in journal (Refereed)
    Abstract [en]

    Ideally, reconstruction of lower extremity soft tissue defects includes not only an esthetically pleasing 3-dimensional shape and solid anchoring to the underlying structures to resist shear forces, but should also address the restoration of sensation. Therefore, we present a prospective study on defect reconstruction of the lower leg and ankle to evaluate the role of sensate free fasciocutaneous lateral arm flap and the impact of sensory nerve reconstruction. Thirty patients were allocated randomly to the study group (n = 15) that obtained end-to-side sensate coaptation using the lower lateral cutaneous brachial nerve to the tibial nerve using the epineural window technique, or to the control group reconstructed without nerve coaptation. At 1-year follow-up the patients were evaluated for pain sensation, thermal sensibility, static and moving 2-point discrimination, and Semmes-Weinstein monofilament tests. Data from both groups were compared and statistically analyzed with the Mann-Whitney U test and the Fisher exact test. Flaps of the study group reached a static and moving 2-point discrimination and Semmes-Weinstein monofilament tests nearly equal to the contralateral leg area and significantly better than flaps of the control group. Donor damage morbidity of the tibial nerve did not occur. To our point of view resensation should be carried out by end-to-side neurorrhaphy to the tibial nerve because of the superior restoration of sensibility.

  • 188.
    Kalbermatten, Daniel
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Schaakxs, Dominique
    Kingham, Paul
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fatManuscript (preprint) (Other academic)
    Abstract [en]

    New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration.  Adipose derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures which should facilitate their use in such regenerative applications.  In this study, we have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures.  Cells from the superficial layer proliferated significantly faster than those from the deep layer. Both in the deep and superficial layers, ASC expressed the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen.  Superficial layer ASC induced significantly enhanced neurite outgrowth from NG108-15 motor neuron like cells when compared with the deep layer cells.  However, RT-PCR analysis showed that ASC isolated from both layers expressed similar levels of the neurotrophic factors NGF, BDNF, GDNF and NT-3.  These results indicate that human ASC have promising potential for the treatment of traumatic nerve injuries and that superficial layer ASC might represent the more optimal cell type for such applications.

  • 189.
    Karalija, Amar
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Diagnostic and therapeutic strategies following spinal cord and brachial plexus injuries2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Traumatic injuries to the spinal cord and brachial plexus induce a significant inflammatory response in the nervous tissue with progressive degeneration of neurons and glial cells, and cause considerable physical and mental suffering in affected patients. This thesis investigates the effects of the antioxidants N-acetyl-cysteine (NAC) and acetyl-L- carnitine (ALC) on the survival of motoneurons in the brainstem and spinal cord, the expression of pro-apoptotic and pro-inflammatory cell markers, axonal sprouting and glial cell reactions after spinal hemisection in adult rats. In addition, a novel MRI protocol has been developed to analyse the extent of neuronal degeneration in the spinal cord. Rubrospinal neurons and tibial motoneurons were pre-labelled with the fluorescent tracer Fast Blue one week before cervical C3 or lumbar L5 spinal cord hemisection. The intrathecal treatment with the antioxidants NAC (2.4mg/day) or ALC (0.9 mg/day) was initiated immediately after injury using Alzet2002 osmotic mini pumps. Spinal cord injury increased the expression of apoptotic cell markers BAX and caspase 3, induced significant degeneration of rubrospinal neurons and spinal motoneurons with associated decrease in immunoreactivity for microtubule-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker glial fibrillary acidic protein and microglial markers OX42 and ED1 was markedly increased. Treatment with NAC and ALC attenuated levels of BAX, caspase 3, OX42 and ED1 expression after 2 weeks postoperatively. After 4-8 weeks of continuous intratheca ltreatment, NAC and ALC rescued approximately half of the rubrospinal neurons and spinal motoneurons destined to die, promoted axonal sprouting, restored the density of MAP2 and synaptophysin immunoreactivity and reduced the microglial reaction. However, antioxidant therapy did not affect the reactive astrocytes in the trauma zone. The inflammation modulating properties of ALC were also studied using cultures of human microglial cells. ALC increased the microglial production of interleukin IL-6 and BDNF, thereby possibly mediating the anti-inflammatory and pro-regenerative effects shown in vivo. To study degeneration in the spinal cord following pre-ganglionic and post-ganglionic brachial plexus injuries, adult rat models of ventral root avulsion and peripheral nerve injury were used. A novel MRI protocol was employed and the images were compared to morphological changes found in histological preparations. Ventral root avulsion caused degeneration of dendritic branches and axonal terminals in the spinal cord, followed by significant shrinkage of the ventral horn. Extensive astroglial and microglial reactions were detected in the histological preparations. Peripheral nerve injury reduced the density of dendritic branches but did not cause shrinkage of the ventral horn. Quantitative analysis of MRI images demonstrated changes in the ventral horn following ventral root avulsion only, thus validating the developed MRI technique as a possible tool for the differentiation of pre-ganglionic and post-ganglionic nerve injuries.

  • 190.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Andersson, Magnus N.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    The surgical treatment of familial cylindromatosis through subgaleal scalp excision2015In: Case reports in plastic surgery & hand surgery, ISSN 2332-0885, Vol. 2, no 3-4, p. 57-59Article in journal (Refereed)
    Abstract [en]

    We treated a 65-year-old woman with familial cylindromatosis, with cylindromas covering the entire scalp. Subgaleal tumor excision and split skin grafting was performed. The graft take was deemed to be excellent, with almost 100% coverage 2.5 weeks after operation, no complications and a satisfying esthetic result.

  • 191.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of acetyl-­L-­carnitine treatment on neuroinflammation: An in vitro studyManuscript (preprint) (Other academic)
  • 192.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikova, Liudmila N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery. Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Neuroprotective Effects of N-Acetyl-Cysteine and Acetyl-L-Carnitine after Spinal Cord Injury in Adult Rats2012In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 7, no 7, p. e41086-Article in journal (Refereed)
    Abstract [en]

    Following the initial acute stage of spinal cord injury, a cascade of cellular and inflammatory responses will lead to progressive secondary damage of the nerve tissue surrounding the primary injury site. The degeneration is manifested by loss of neurons and glial cells, demyelination and cyst formation. Injury to the mammalian spinal cord results in nearly complete failure of the severed axons to regenerate. We have previously demonstrated that the antioxidants N-acetyl-cysteine (NAC) and acetyl-L-carnitine (ALC) can attenuate retrograde neuronal degeneration after peripheral nerve and ventral root injury. The present study evaluates the effects of NAC and ALC on neuronal survival, axonal sprouting and glial cell reactions after spinal cord injury in adult rats. Tibial motoneurons in the spinal cord were pre-labeled with fluorescent tracer Fast Blue one week before lumbar L5 hemisection. Continuous intrathecal infusion of NAC (2.4 mg/day) or ALC (0.9 mg/day) was initiated immediately after spinal injury using Alzet 2002 osmotic minipumps. Neuroprotective effects of treatment were assessed by counting surviving motoneurons and by using quantitative immunohistochemistry and Western blotting for neuronal and glial cell markers 4 weeks after hemisection. Spinal cord injury induced significant loss of tibial motoneurons in L4-L6 segments. Neuronal degeneration was associated with decreased immunostaining for microtubular-associated protein-2 (MAP2) in dendritic branches, synaptophysin in presynaptic boutons and neurofilaments in nerve fibers. Immunostaining for the astroglial marker GFAP and microglial marker OX42 was increased. Treatment with NAC and ALC rescued approximately half of the motoneurons destined to die. In addition, antioxidants restored MAP2 and synaptophysin immunoreactivity. However, the perineuronal synaptophysin labeling was not recovered. Although both treatments promoted axonal sprouting, there was no effect on reactive astrocytes. In contrast, the microglial reaction was significantly attenuated. The results indicate a therapeutic potential for NAC and ALC in the early treatment of traumatic spinal cord injury.

  • 193.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Orädd, Greger
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Physiology.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Differentiation of pre- and postganglionic nerve injury using MRI of the spinal cord2016In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 11, no 12, article id e0168807Article in journal (Refereed)
    Abstract [en]

    Brachial plexus injury (BPI) is a devastating type of nerve injury, potentially causing loss of motor and sensory function. Principally, BPI is either categorized as preganglionic or post- ganglionic, with the early establishment of injury level being crucial for choosing the correct treatment strategy. Despite diagnostic advances, the need for a reliable, non-invasive method for establishing the injury level remains. We studied the usefulness of in vivo mag- netic resonance imaging (MRI) of the spinal cord for determination of injury level. The find- ings were related to neuronal and glial changes. Rats underwent unilateral L4 & L5 ventral roots avulsion or sciatic nerve axotomy. The injuries served as models for pre- and postgan- glionic BPI, respectively. MRI of the L4/L5 spinal cord segments 4 weeks after avulsion showed ventral horn (VH) shrinkage on the injured side compared to the uninjured side. Axotomy induced no change in the VH size on MRI. Following avulsion, histological sections of L4/L5 revealed shrinkage in the VH grey matter area occupied by NeuN-positive neurons, loss of microtubular-associated protein-2 positive dendritic branches (MAP2), pan-neurofila- ment positive axons (PanNF), synaptophysin-positive synapses (SYN) and increase in immunoreactivity for the microglial OX42 and astroglial GFAP markers. Axotomy induced no changes in NeuN-reactivity, modest decrease of MAP2 immunoreactivity, no changes in SYN and PanNF labelling, and a modest increase in OX42 and SYN labeling. Histological and radiological findings were congruent when assessing changes after axotomy, while MRI somewhat underestimated the shrinkage. This study indicates a potential diagnostic value of structural spinal cord MRI following BPI. 

  • 194.
    Karalija, Amar
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Ludmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kingham, Paul J
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    The effects of N-acetyl-cysteine and acetyl-l-carnitine on neural survival, neuroinflammation and regeneration following spinal cord injury2014In: Neuroscience, ISSN 0306-4522, E-ISSN 1873-7544, Vol. 269, p. 143-151Article in journal (Refereed)
    Abstract [en]

    Traumatic spinal cord injury induces a long-standing inflammatory response in the spinal cord tissue, leading to a progressive apoptotic death of spinal cord neurons and glial cells. We have recently demonstrated that immediate treatment with the antioxidants N-acetyl-cysteine (NAC) and acetyl-l-carnitine (ALC) attenuates neuroinflammation, induces axonal sprouting, and reduces the death of motoneurons in the vicinity of the trauma zone 4weeks after initial trauma. The objective of the current study was to investigate the effects of long-term antioxidant treatment on the survival of descending rubrospinal neurons after spinal cord injury in rats. It also examines the short- and long-term effects of treatment on apoptosis, inflammation, and regeneration in the spinal cord trauma zone. Spinal cord hemisection performed at the level C3 induced a significant loss of rubrospinal neurons 8weeks after injury. At 2weeks, an increase in the expression of the apoptosis-associated markers BCL-2-associated X protein (BAX) and caspase 3, as well as the microglial cell markers OX42 and ectodermal dysplasia 1 (ED1), was seen in the trauma zone. After 8weeks, an increase in immunostaining for OX42 and the serotonin marker 5HT was detected in the same area. Antioxidant therapy reduced the loss of rubrospinal neurons by approximately 50%. Treatment also decreased the expression of BAX, caspase 3, OX42 and ED1 after 2weeks. After 8weeks, treatment decreased immunoreactivity for OX42, whereas it was increased for 5HT. In conclusion, this study provides further insight in the effects of treatment with NAC and ALC on descending pathways, as well as short- and long-term effects on the spinal cord trauma zone.

  • 195.
    Kelly, Edward J
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Jacoby, C
    Terenghi, Giorgio
    Mennen, U
    Ljungberg, Christina
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    End-to-side nerve coaptation: a qualitative and quantitative assessment in the primate.2007In: Journal of Plastic Reconstructive & Aesthetic Surgery, ISSN 1748-6815, Vol. 60, no 1, p. 1-12Article in journal (Other academic)
    Abstract [en]

    There are several reasons why end-to-side nerve coaptation has not been widely adopted clinically. Among these are the putative damage inflicted on the donor nerve and the variable quality of the regeneration in the recipient nerve. So far experiments on end-to-side nerve repair have been short term and mostly carried out on rats. This long-term study of end-to-side nerve repair of ulnar to median and median to ulnar nerve was performed using adult nonhuman primates. Eleven nerve repairs were studied at different time points. Eighteen, 22, 33 and 57 months after surgery a qualitative and quantitative analysis of the donor nerve and regenerating nerve revealed variable levels of percentage axonal regeneration compared with matched controls (1.4%-136%). Morphological evidence of donor nerve damage was identified distal to the coaptation site in four of the 11 cases, and in these cases the best axonal regeneration in the corresponding recipient nerves was observed. This donor nerve damage could neither be demonstrated in terms of a decrease in axon counts distal to the coaptation nor as donor target organ denervation. Recipient target organ regeneration like the axonal regeneration varied, with evidence of motor regeneration in eight out of 11 cases and sensory regeneration, as measured by percentage innervation density compared with matched controls, varied from 12.5% to 49%. Results from the present study demonstrate that the end-to-side coaptation technique in the nonhuman primate does not give predictable results. In general the motor recovery appeared better than the sensory and in those cases where donor nerve damage was observed there was better motor and sensory regeneration overall than in the remaining cases.

  • 196.
    Khrenov, A P
    et al.
    Nizhnii Novgorod State Medical Academy.
    Novikov, L N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikova, L N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Regeneration of dorsal roots of spinal nerves in rats after transplantation of embryonic nerve tissue.2002In: Neuroscience and Behavioral Physiology, ISSN 0097-0549, E-ISSN 1573-899X, Vol. 32, no 1, p. 1-4Article in journal (Refereed)
  • 197.
    Kingham, Paul J
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Kolar, Mallappa K
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Novikova, Liudmila N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Novikov, Lev N
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair2014In: Stem Cells and Development, ISSN 1547-3287, E-ISSN 1557-8534, Vol. 23, no 7, p. 741-754Article in journal (Refereed)
    Abstract [en]

    In future, adipose-derived stem cells (ASC) might be used to treat neurological disorders. In this study, the neurotrophic and angiogenic properties of human ASC were evaluated, and their effects in a peripheral nerve injury model were determined. In vitro growth factor stimulation of the cells resulted in increased secretion of brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), vascular endothelial growth factor-A (VEGF-A), and angiopoietin-1 proteins. Conditioned medium from stimulated cells increased neurite outgrowth of dorsal root ganglia (DRG) neurons. Similarly, stimulated cells showed an enhanced ability to induce capillary-like tube formation in an in vitro angiogenesis assay. ASC were seeded into a fibrin conduit that was used to bridge a 10 mm rat nerve gap. After 2 weeks, the animals treated with control or stimulated ASC showed an enhanced axon regeneration distance. Stimulated cells evoked more total axon growth. Analysis of regeneration and apoptosis-related gene expression showed that both ASC and stimulated ASC enhanced GAP-43 and activating transcription factor 3 (ATF-3) expression in the spinal cord and reduced c-jun expression in the DRG. Caspase-3 expression in the DRG was reduced by stimulated ASC. Both ASC and stimulated ASC also increased the vascularity of the fibrin nerve conduits. Thus, ASC produce functional neurotrophic and angiogenic factors, creating a more desirable microenvironment for nerve regeneration.

  • 198.
    Kingham, Paul J
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Blond McIndoe Laboratories, School of Clinical and Laboratory Sciences, University of Manchester, Manchester, UK.
    Mantovani, Cristina
    Blond McIndoe Laboratories, School of Clinical and Laboratory Sciences, University of Manchester, Manchester, UK.
    Terenghi, Giorgio
    Blond McIndoe Laboratories, School of Clinical and Laboratory Sciences, University of Manchester, Manchester, UK.
    Stem cell and neuron co-cultures for the study of nerve regeneration2011In: 3D Cell Culture: Methods and Protocols / [ed] John W. Haycock, New York: Humana Press, 2011, Vol. 695, p. 115-127Chapter in book (Refereed)
    Abstract [en]

    Many experimental in vivo studies have indicated that Schwann cells are key facilitators of peripheral nerve regeneration but their clinical therapeutic potential may be limited. Recent advances suggest that stem cell therapy could one day be used to treat nerve traumas. We have shown how adult stem cells can be differentiated into a Schwann cell phenotype, characterised by expression of glial cell proteins and promotion of neurite outgrowth. The development of new cell culture models which mimic the in vivo regeneration environment will help us to better understand the functional benefits of these cells. Here, we describe a stepwise approach towards this, moving from traditional two-dimensional non-contact co-cultures to new three-dimensional models utilising fibrin matrices.

  • 199.
    Kingham, Paul J.
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Reid, Adam J.
    Wiberg, Mikael
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Adipose-Derived Stem Cells for Nerve Repair: Hype or Reality?2014In: Cells Tissues Organs, ISSN 1422-6405, E-ISSN 1422-6421, Vol. 200, no 1, p. 23-30Article, review/survey (Refereed)
    Abstract [en]

    Peripheral nerve injury is a relatively commonly occurring trauma which seriously compromises the quality of life for many individuals. There is a major need to devise new treatment strategies, and one possible approach is to develop cellular therapies to bioengineer new nerve tissue and/or modulate the endogenous regenerative mechanisms within the peripheral nervous system. In this short review we describe how stem cells isolated from adipose tissue could be a suitable element of this approach. We describe the possible mechanisms through which the stem cells might exert a positive influence on peripheral nerve regeneration. These include their ability to differentiate into cells resembling Schwann cells and their secretion of a plethora of neurotrophic growth factors. We also review the literature describing the effects of these cells when tested using in vivo peripheral nerve injury models.

  • 200.
    Kjellgren, Daniel
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
    Human extraocular muscles: molecular diversity of a unique muscle allotype2004Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Introduction: The extraocular muscles (EOMs) are considered a separate class of skeletal muscle, allotype. Myosin is the major contractile protein in muscle. The myosin heavy chain (MyHC) isoforms are the best molecular markers of functional heterogeneity of muscle fibers. The relaxation rate, reflects the rate at which Ca2+ is transported back into the sarcoplasmic reticulum (SR) mostly by SR Ca2+ATPase (SERCA). Myosin binding protein C (MyBP-C), plays a physiological role in regulating contraction. The laminins (Ln) are the major non-collagenous components of the basement membrane (BM) surrounding muscle fibers and are important for muscle fiber integrity.

    Methods: Adult human EOMs were studied with SDS-PAGE, immunoblots and immunocytochemistry, the latter with antibodies against six MyHC, 2 SERCA, 2 MyBP-C and 8 laminin chain isoforms. The capillary density was also determined.

    Results: Most fibers contained a mixture of MyHC isoforms. Three major groups of fibers could be distinguished. Fast fibers that stained with anti-MyHCIIa, slow fibers that stained with anti-MyHCI and MyHCeompos/MyHCIIaneg-fibers that stained with neither of these antibodies but with anti-MyHCI+IIa+eom and anti-MyHCeom. A majority of the fibers contained both SERCA1 and 2 whereas 1% were unstained with both antibodies. Biochemically SERCA2 was more abundant than SERCA1. MyBP-Cfast was not present in the EOMs and MyBP-Cslow was only detected immunocytochemically. The extrasynaptical BM of the EOM muscle fibers contained Lna2, b1, b2, g1, a4 and a5 chains. The capillary density in the EOMs was very high (1050 +/-190 capillaries/mm2) and significantly (p<0.05) higher in the orbital than in the global layer.

    Conclusions: The co-existence of complex mixtures of several crucial protein isoforms provide the human EOMs with a unique molecular portfolio that a) allows a highly specific fine-tuning regime of contraction and relaxation, and b) imparts structural properties that are likely to contribute to protection against certain neuromuscular diseases.

1234567 151 - 200 of 417
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf