Umeå University's logo

umu.sePublikasjoner
Endre søk
Begrens søket
2345678 201 - 250 of 633
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 201. Fuhrmann, Jakob
    et al.
    Schmidt, Andreas
    Spiess, Silvia
    Lehner, Anita
    Turgay, Kürsad
    Mechtler, Karl
    Charpentier, Emmanuelle
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Clausen, Tim
    McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR2009Inngår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 324, nr 5932, s. 1323-1327Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    All living organisms face a variety of environmental stresses that cause the misfolding and aggregation of proteins. To eliminate damaged proteins, cells developed highly efficient stress response and protein quality control systems. We performed a biochemical and structural analysis of the bacterial CtsR/McsB stress response. The crystal structure of the CtsR repressor, in complex with DNA, pinpointed key residues important for high-affinity binding to the promoter regions of heat-shock genes. Moreover, biochemical characterization of McsB revealed that McsB specifically phosphorylates arginine residues in the DNA binding domain of CtsR, thereby impairing its function as a repressor of stress response genes. Identification of the CtsR/McsB arginine phospho-switch expands the repertoire of possible protein modifications involved in prokaryotic and eukaryotic transcriptional regulation.

  • 202.
    Fällman, Erik
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Schedin, Staffan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för tillämpad fysik och elektronik.
    Jass, Jana
    Andersson, Magnus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Axner, Ove
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för fysik.
    Measurement of Adhesion Forces With Optical Tweezers: System Description And Experimental Verification2003Inngår i: World congress on medical physics and biomedical engineering, 2003Konferansepaper (Annet vitenskapelig)
  • 203.
    Fällman, Maria
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gustavsson, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Cellular mechanisms of bacterial internalization counteracted by Yersinia2005Inngår i: International Review of Cytology: a survey of cell biology / [ed] Kwang W. Jeon, Elsevier, 2005, Vol. 246, s. 135-188Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    Upon host-cell contact, human pathogenic Yersinia species inject Yop virulence effectors into the host through a Type III secretion-and-translocation system. These virulence effectors cause a block in phagocytosis (YopE, YopT, YpkA, and YopH) and suppression of inflammatory mediators (YopJ). The Yops that block phagocytosis either interfere with the host cell actin regulation of Rho GTPases (YopE, YopT, and YpkA) or specifically and rapidly inactivate host proteins involved in signaling from the receptor to actin (YopH). The block in uptake has been shown to be activated following binding to Fc, Complement, and beta1-integrin receptors in virtually any kind of host cell. Thus, the use of Yersinia as a model system to study Yersinia-host cell interactions provides a good tool to explore signaling pathways involved in phagocytosis.

  • 204.
    Gaballa, Ahmed
    et al.
    Department of Food Science, Cornell University, NY, Ithaca, United States.
    Wiedmann, Martin
    Department of Food Science, Cornell University, NY, Ithaca, United States.
    Carroll, Laura M.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    More than mcr: canonical plasmid- and transposon-encoded mobilized colistin resistance genes represent a subset of phosphoethanolamine transferases2023Inngår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 13, artikkel-id 1060519Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mobilized colistin resistance genes (mcr) may confer resistance to the last-resort antimicrobial colistin and can often be transmitted horizontally. mcr encode phosphoethanolamine transferases (PET), which are closely related to chromosomally encoded, intrinsic lipid modification PET (i-PET; e.g., EptA, EptB, CptA). To gain insight into the evolution of mcr within the context of i-PET, we identified 69,814 MCR-like proteins present across 256 bacterial genera (obtained by querying known MCR family representatives against the National Center for Biotechnology Information [NCBI] non-redundant protein database via protein BLAST). We subsequently identified 125 putative novel mcr-like genes, which were located on the same contig as (i) ≥1 plasmid replicon and (ii) ≥1 additional antimicrobial resistance gene (obtained by querying the PlasmidFinder database and NCBI’s National Database of Antibiotic Resistant Organisms, respectively, via nucleotide BLAST). At 80% amino acid identity, these putative novel MCR-like proteins formed 13 clusters, five of which represented putative novel MCR families. Sequence similarity and a maximum likelihood phylogeny of mcr, putative novel mcr-like, and ipet genes indicated that sequence similarity was insufficient to discriminate mcr from ipet genes. A mixed-effect model of evolution (MEME) indicated that site- and branch-specific positive selection played a role in the evolution of alleles within the mcr-2 and mcr-9 families. MEME suggested that positive selection played a role in the diversification of several residues in structurally important regions, including (i) a bridging region that connects the membrane-bound and catalytic periplasmic domains, and (ii) a periplasmic loop juxtaposing the substrate entry tunnel. Moreover, eptA and mcr were localized within different genomic contexts. Canonical eptA genes were typically chromosomally encoded in an operon with a two-component regulatory system or adjacent to a TetR-type regulator. Conversely, mcr were represented by single-gene operons or adjacent to pap2 and dgkA, which encode a PAP2 family lipid A phosphatase and diacylglycerol kinase, respectively. Our data suggest that eptA can give rise to “colistin resistance genes” through various mechanisms, including mobilization, selection, and diversification of genomic context and regulatory pathways. These mechanisms likely altered gene expression levels and enzyme activity, allowing bona fide eptA to evolve to function in colistin resistance.

    Fulltekst (pdf)
    fulltext
  • 205. Gabrielsen, Mads
    et al.
    Beckham, Katherine S H
    Feher, Victoria A
    Zetterström, Caroline E
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Wang, Dai
    Müller, Sylke
    Elofsson, Mikael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Amaro, Rommie E
    Byron, Olwyn
    Roe, Andrew J
    Structural Characterisation of Tpx from Yersinia pseudotuberculosis Reveals Insights into the Binding of Salicylidene Acylhydrazide Compounds2012Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 7, nr 2, s. e32217-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Thiol peroxidase, Tpx, has been shown to be a target protein of the salicylidene acylhydrazide class of antivirulence compounds. In this study we present the crystal structures of Tpx from Y. pseudotuberculosis (ypTpx) in the oxidised and reduced states, together with the structure of the C61S mutant. The structures solved are consistent with previously solved atypical 2-Cys thiol peroxidases, including that for “forced” reduced states using the C61S mutant. In addition, by investigating the solution structure of ypTpx using small angle X-ray scattering (SAXS), we have confirmed that reduced state ypTpx in solution is a homodimer. The solution structure also reveals flexibility around the dimer interface. Notably, the conformational changes observed between the redox states at the catalytic triad and at the dimer interface have implications for substrate and inhibitor binding. The structural data were used to model the binding of two salicylidene acylhydrazide compounds to the oxidised structure of ypTpx. Overall, the study provides insights into the binding of the salicylidene acylhydrazides to ypTpx, aiding our long-term strategy to understand the mode of action of this class of compounds.

    Fulltekst (pdf)
    fulltext
  • 206. Gavriljuk, Konstantin
    et al.
    Schartner, Jonas
    Seidel, Hans
    Dickhut, Clarissa
    Zahedi, Rene P.
    Hedberg, Christian
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Kötting, Carsten
    Gerwert, Klaus
    Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX2016Inngår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 55, nr 31, s. 4375-4385Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The intracellular pathogen Legionella pneumophila infects lung macrophages and injects numerous effector proteins into the host cell to establish a vacuole for proliferation. The necessary interference with vesicular trafficking of the host is achieved by modulation of the function of Rab GTPases. The effector protein AnkX chemically modifies Rab1b and Rab35 by covalent phosphocholination of serine or threonine residues using CDP-choline as a donor. So far, the phosphoryl transfer mechanism and the relevance of observed autophosphocholination of AnkX remained disputable. We designed tailored caged compounds to make this type of enzymatic reaction accessible for time-resolved Fourier transform infrared difference spectroscopy. By combining spectroscopic and biochemical methods, we determined that full length AnkX is autophosphocholinated at Ser521, Thr620, and Thr943. However, autophosphocholination loses specificity for these sites in shortened constructs and does not appear to be relevant for the catalysis of the phosphoryl transfer. In contrast, transient phosphocholination of His229 in the conserved catalytic motif might exist as a short-lived reaction intermediate. Upon substrate binding, His229 is deprotonated and locked in this state, being rendered capable of a nucleophilic attack on the pyrophosphate moiety of the substrate. The proton that originated from His229 is transferred to a nearby carboxylic acid residue. Thus, our combined findings support a ping-pong mechanism involving phosphocholination of His229 and subsequent transfer of phosphocholine to the Rab GTPase. Our approach can be extended to the investigation of further nucleotidyl transfer reactions, which are currently of reemerging interest in regulatory pathways of host–pathogen interactions.

  • 207.
    Gebieluca Dabul, Andrei Nicoli
    et al.
    São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
    Avaca-Crusca, Juliana Sposto
    São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil; Núcleo de Perícias Criminalísticas de São José do Rio Preto, Instituto de Criminalística, Superintendência da Polícia Técnico-Científica, São José do Rio Preto, São Paulo, Brazil.
    Navais, Roberto
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
    Merlo, Thaís Panhan
    São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
    Van Tyne, Daria
    Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States; Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, United States.
    Gilmore, Michael S.
    Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, United States; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States.
    Baratella da Cunha Camargo, Ilana Lopes
    São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil.
    Molecular basis for the emergence of a new hospital endemic tigecycline-resistant Enterococcus faecalis ST103 lineage2019Inngår i: Infection, Genetics and Evolution, ISSN 1567-1348, E-ISSN 1567-7257, Vol. 67, s. 23-32Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Enterococcus faecalis are a major cause of nosocomial infection worldwide, and the spread of vancomycin resistant strains (VRE) limits treatment options. Tigecycline-resistant VRE began to be isolated from inpatients at a Brazilian hospital within months following the addition of tigecycline to the hospital formulary. This was found to be the result of a spread of an ST103 E. faecalis clone. Our objective was to identify the basis for tigecycline resistance in this lineage. The genomes of two closely related tigecycline-susceptible (MIC = 0.06 mg/L), and three representative tigecycline-resistant (MIC = 1 mg/L) ST103 isolates were sequenced and compared. Further, efforts were undertaken to recapitulate the emergence of resistant strains in vitro. The specific mutations identified in clinical isolates in several cases were within the same genes identified in laboratory-evolved strains. The contribution of various polymorphisms to the resistance phenotype was assessed by trans-complementation of the wild type or mutant alleles, by testing for differences in mRNA abundance, and/or by examining the phenotype of transposon insertion mutants. Among tigecycline-resistant clinical isolates, five genes contained non-synonymous mutations, including two genes known to be related to enterococcal tigecycline resistance (tetM and rpsJ). Finally, within the in vitro-selected resistant variants, mutation in the gene for a MarR-family response regulator was associated with tigecycline resistance. This study shows that E. faecalis mutates to attain tigecycline resistance through the complex interplay of multiple mechanisms, along multiple evolutionary trajectories.

  • 208.
    Gekara, Nelson O.
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
    Jiang, Hui
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    The innate immune DNA sensor cGAS: A membrane, cytosolic, or nuclear protein?2019Inngår i: Science Signaling, ISSN 1945-0877, E-ISSN 1937-9145, Vol. 12, nr 581, artikkel-id eaax3521Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Cyclic cGMP-AMP synthase (cGAS) alerts the innate immune system to the presence of foreign or damaged self-DNA inside the cell and is critical for the outcome of infections, inflammatory diseases, and cancer. Two studies now demonstrate that cGAS activation is regulated by differential subcellular localization through its non-enzymatic, N-terminal domain.

  • 209.
    Giacomucci, Sean
    et al.
    Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, QC, Montréal, Canada.
    Alvarez, Laura
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Rodrigues, Christopher D.A.
    iThree Institute, University of Technology Sydney, NSW, Ultimo, Australia; School of Life Sciences, University of Warwick, Coventry, United Kingdom.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Paradis-Bleau, Catherine
    Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université de Montréal, QC, Montréal, Canada.
    Hydroxyl Radical Overproduction in the Envelope: An Achilles' Heel in Peptidoglycan Synthesis2022Inngår i: Microbiology Spectrum, E-ISSN 2165-0497, Vol. 10, nr 1, artikkel-id e01203-21Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    While many mechanisms governing bacterial envelope homeostasis have been identified, others remain poorly understood. To decipher these processes, we previously developed an assay in the Gram-negative model Escherichia coli to identify genes involved in maintenance of envelope integrity. One such gene was ElyC, which was shown to be required for envelope integrity and peptidoglycan synthesis at room temperature. ElyC is predicted to be an integral inner membrane protein with a highly conserved domain of unknown function (DUF218). In this study, and stemming from a further characterization of the role of ElyC in maintaining cell envelope integrity, we serendipitously discovered an unappreciated form of oxidative stress in the bacterial envelope. We found that cells lacking ElyC overproduce hydroxyl radicals (HO) in their envelope compartment and that HO overproduction is directly or indirectly responsible for the peptidoglycan synthesis arrest, cell envelope integrity defects, and cell lysis of the DelyC mutant. Consistent with these observations, we show that the DelyC mutant defect is suppressed during anaerobiosis. HOis known to cause DNA damage but to our knowledge has not been shown to interfere with peptidoglycan synthesis. Thus, our work implicates oxidative stress as an important stressor in the bacterial cell envelope and opens the door to future studies deciphering the mechanisms that render peptidoglycan synthesis sensitive to oxidative stress.

    Fulltekst (pdf)
    fulltext
  • 210.
    Gillenius, Erik
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Urban, Constantin F
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins2015Inngår i: Microbes and infection, ISSN 1286-4579, E-ISSN 1769-714X, Vol. 17, nr 5, s. 327-336Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Yersinia pseudotuberculosis adhesive protein invasin is crucial for the bacteria to cross the intestine epithelium by binding to β1 integrins on M-cells and gaining access to the underlying tissues. After the crossing invasin can bind to β1 integrins on other cell surfaces, however effector proteins delivered by the type III secretion system Y. pseudotuberculosis efficiently inhibit potential immune responses induced by this interaction. Here, we use mutant Y. pseudotuberculosis strains lacking the type III secretion system and additionally invasin-expressing Escherichia coli to analyze neutrophil responses towards invasin. Our data reveals that invasin induces production of reactive oxygen species and release of chromatin into the extracellular milieu, which we confirmed to be neutrophil extracellular traps by immunofluorescence microscopy. This was mediated through β1 integrins and was dependent on both the production of reactive oxygen species and signaling through phosphoinositide 3-kinase. We therefore have gained insight into a potential role of integrins in inflammation and infection clearance that has not previously been described, suggesting that targeting of β1 integrins could be utilized as an adjunctive therapy against yersiniosis.

    Fulltekst (pdf)
    fulltext
  • 211.
    Gilmore, Michael C.
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Peptidoglycan recycling mediated by an ABC transporter in the plant pathogen Agrobacterium tumefaciens2022Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikkel-id 7927Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    During growth and division, the bacterial cell wall peptidoglycan (PG) is remodelled, resulting in the liberation of PG muropeptides which are typically reinternalized and recycled. Bacteria belonging to the Rhizobiales and Rhodobacterales orders of the Alphaproteobacteria lack the muropeptide transporter AmpG, despite having other key PG recycling enzymes. Here, we show that an alternative transporter, YejBEF-YepA, takes over this role in the Rhizobiales phytopathogen Agrobacterium tumefaciens. Muropeptide import by YejBEF-YepA governs expression of the β-lactamase AmpC in A. tumefaciens, contributing to β-lactam resistance. However, we show that the absence of YejBEF-YepA causes severe cell wall defects that go far beyond lowered AmpC activity. Thus, contrary to previously established Gram-negative models, PG recycling is vital for cell wall integrity in A. tumefaciens. YepA is widespread in the Rhizobiales and Rhodobacterales, suggesting that YejBEF-YepA-mediated PG recycling could represent an important but overlooked aspect of cell wall biology in these bacteria.

    Fulltekst (pdf)
    fulltext
  • 212.
    Gilmore, Michael C.
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Yadav, Akhilesh K.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, India; Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Uttar Pradesh, Lucknow, India.
    Espaillat, Akbar
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Gust, Andrea A.
    Department of Plant Biochemistry, Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University of Tübingen, Tübingen, Germany.
    Williams, Michelle A.
    Division of Biological Sciences, University of Missouri-Columbia, MO, Columbia, United States.
    Brown, Pamela J.B.
    Division of Biological Sciences, University of Missouri-Columbia, MO, Columbia, United States.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    A peptidoglycan N-deacetylase specific for anhydroMurNAc chain termini in Agrobacterium tumefaciens2024Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 300, nr 2, artikkel-id 105611Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    During growth, bacteria remodel and recycle their peptidoglycan (PG). A key family of PG-degrading enzymes is the lytic transglycosylases, which produce anhydromuropeptides, a modification that caps the PG chains and contributes to bacterial virulence. Previously, it was reported that the polar-growing Gram-negative plant pathogen Agrobacterium tumefaciens lacks anhydromuropeptides. Here, we report the identification of an enzyme, MdaA (MurNAc deacetylase A), which specifically removes the acetyl group from anhydromuropeptide chain termini in A. tumefaciens, resolving this apparent anomaly. A. tumefaciens lacking MdaA accumulates canonical anhydromuropeptides, whereas MdaA was able to deacetylate anhydro-N-acetyl muramic acid in purified sacculi that lack this modification. As for other PG deacetylases, MdaA belongs to the CE4 family of carbohydrate esterases but harbors an unusual Cys residue in its active site. MdaA is conserved in other polar-growing bacteria, suggesting a possible link between PG chain terminus deacetylation and polar growth.

    Fulltekst (pdf)
    fulltext
  • 213. Ginley, Brandon G
    et al.
    Emmons, Tiffany
    Lutnick, Brendon
    Urban, Constantin F
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Immunologi/immunkemi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Segal, Brahm H
    Sarder, Pinaki
    Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy2017Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 7, nr 1, artikkel-id 17755Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Neutrophil extracellular traps (NETs) are extracellular defense mechanisms used by neutrophils, where chromatin is expelled together with histones and granular/cytoplasmic proteins. They have become an immunology hotspot, implicated in infections, but also in a diverse array of diseases such as systemic lupus erythematosus, diabetes, and cancer. However, the precise assessment of in vivo relevance in different disease settings has been hampered by limited tools to quantify occurrence of extracellular traps in experimental models and human samples. To expedite progress towards improved quantitative tools, we have developed computational pipelines to identify extracellular traps from an in vitro human samples visualized using the ImageStream® platform (Millipore Sigma, Darmstadt, Germany), and confocal images of an in vivo mouse disease model of aspergillus fumigatus pneumonia. Our two in vitro methods, tested on n = 363/n =145 images respectively, achieved holdout sensitivity/specificity 0.98/0.93 and 1/0.92. Our unsupervised method for thin lung tissue sections in murine fungal pneumonia achieved sensitivity/specificity 0.99/0.98 in n = 14 images. Our supervised method for thin lung tissue classified NETs with sensitivity/specificity 0.86/0.90. We expect that our approach will be of value for researchers, and have application in infectious and inflammatory diseases.

    Fulltekst (pdf)
    fulltext
  • 214.
    Good, James A. D.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Andersson, Christopher
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Hansen, Sabine
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Wall, Jessica
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Krishnan, Syam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Begum, Afshan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Niemiec, Moritz Sebastian
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Vaitkevicius, Karolis
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sauer, Uwe H.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sauer–Eriksson, A. Elisabeth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Attenuating Listeria monocytogenes virulence by targeting the regulatory protein PrfA2016Inngår i: Cell chemical biology, ISSN 2451-9448, Vol. 23, nr 3, s. 404-414Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes infectivity by reducing the expression of virulence genes, without compromising bacterial growth. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds within a hydrophobic pocket, located between the C- and N-terminal domains of PrfA, and interacts with residues important for PrfA activation. This indicates that these inhibitors maintain the DNA-binding helix-turn-helix motif of PrfA in a disordered state, thereby preventing a PrfA:DNA interaction. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes.

    Fulltekst (pdf)
    fulltext
  • 215.
    Good, James A. D.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Berretta, Giacomo
    Anthony, Nahoum G.
    Mackay, Simon P.
    The Discovery and Development of Eg5 Inhibitors for the Clinic2015Inngår i: Kinesins and Cancer / [ed] Frank Kozielski, Springer, 2015, s. 27-52Kapittel i bok, del av antologi (Fagfellevurdert)
    Abstract [en]

    The mitotic kinesin Eg5 (also known as kinesin spindle protein, KSP, Kif11, a member of the kinesin-5 family) represents an attractive oncology drug target in the ongoing development of anti-mitotic drugs that selectively block mitosis through disruption to the mitotic spindle. In this state-of-the-art review, we outline the progress that has been made in the development of Eg5 inhibitors for clinical use. We evaluate the preclinical development and attributes of key Eg5 inhibitors that have undergone clinical evaluation or extensive preclinical optimisation, and discuss the medicinal chemistry strategies utilised in their design to overcome the challenges encountered during lead optimisation. We critically analyse the progress that has been made towards delivering clinical benefits, and the wider implications this has in the utility of mitotic kinesin inhibitors as prospective oncology drugs.

  • 216.
    Good, James A. D.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Kulén, Martina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Krishnan, K. Syam
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Bahnan, Wael
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Núñez-Otero, Carlos
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Nilsson, Ingela
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Wede, Emma
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    de Groot, Esmee
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Gylfe, Åsa
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Bergström, Sven
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Thiazolino 2-pyridone amide isosteres as inhibitors of Chlamydia trachomatis infectivity2017Inngår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 60, nr 22, s. 9393-9399Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chlamydia trachomatis is a global health burden due to its prevalence as a sexually transmitted disease and as the causative agent of the eye infection trachoma. We recently discovered 3-amido thiazolino 2-pyridones which attenuated C. trachomatis infectivity without affecting host cell or commensal bacteria viability. We present here the synthesis and evaluation of nonhydrolyzable amide isosteres based on this class, leading to highly potent 1,2,3-triazole based infectivity inhibitors (EC50 ≤ 20 nM).

  • 217.
    Good, James A. D.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Silver, Jim
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Núñez-Otero, Carlos
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Bahnan, Wael
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Krishnan, K. Syam
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Salin, Olli
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Engström, Patrik
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Svensson, Richard
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Artursson, Per
    Department of Pharmacy, Uppsala University, SE-751 23 Uppsala, Sweden; The Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Chemical Biology Consortium Sweden, Uppsala University, SE-751 23 Uppsala, Sweden.
    Gylfe, Åsa
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Bergström, Sven
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Thiazolino 2-Pyridone Amide Inhibitors of Chlamydia trachomatis Infectivity2016Inngår i: Journal of Medicinal Chemistry, ISSN 0022-2623, E-ISSN 1520-4804, Vol. 59, nr 5, s. 2094-2108Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The bacterial pathogen Chlamydia trachomatis is a global health burden currently treated with broad-spectrum antibiotics which disrupt commensal bacteria. We recently identified a compound through phenotypic screening that blocked infectivity of this intracellular pathogen without host cell toxicity (compound 1, KSK 120). Herein, we present the optimization of 1 to a class of thiazolino 2-pyridone amides that are highly efficacious (EC50 <= 100 nM) in attenuating infectivity across multiple serovars of C. trachomatis without host cell toxicity. The lead compound 21a exhibits reduced lipophilicity versus 1 and did not affect the growth or viability of representative commensal flora at 50 mu M. In microscopy studies, a highly active fluorescent analogue 37 localized inside the parasitiphorous inclusion, indicative of a specific targeting of bacterial components. In summary, we present a class of small molecules to enable the development of specific treatments for C. trachomatis.

  • 218.
    Graffeuil, Antoine
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Guerrero-Castro, Julio
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Assefa, Aster
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Uhlin, Bernt Eric
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Cisneros, David A.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Polar mutagenesis of polycistronic bacterial transcriptional units using Cas12a2022Inngår i: Microbial Cell Factories, ISSN 1475-2859, E-ISSN 1475-2859, Vol. 21, nr 1, artikkel-id 139Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Background: Functionally related genes in bacteria are often organized and transcribed as polycistronic transcrip‑ tional units. Examples are the fim operon, which codes for biogenesis of type 1 fimbriae in Escherichia coli, and the atp operon, which codes for the FoF1 ATP synthase. We tested the hypothesis that markerless polar mutations could be efficiently engineered using CRISPR/Cas12a in these loci.

    Results: Cas12a‑mediated engineering of a terminator sequence inside the fimA gene occurred with efficiencies between 10 and 80% and depended on the terminator’s sequence, whilst other types of mutations, such as a 97 bp deletion, occurred with 100% efficiency. Polar mutations using a terminator sequence were also engineered in the atp locus, which induced its transcriptional shutdown and produced identical phenotypes as a deletion of the whole atp locus (ΔatpIBEFHAGDC). Measuring the expression levels in the fim and atp loci showed that many supposedly non‑ polar mutants induced a significant polar effect on downstream genes. Finally, we also showed that transcriptional shutdown or deletion of the atp locus induces elevated levels of intracellular ATP during the exponential growth phase.

    Conclusions: We conclude that Cas12a‑mediated mutagenesis is an efficient simple system to generate polar mutants in E. coli. Different mutations were induced with varying degrees of efficiency, and we confirmed that all these mutations abolished the functions encoded in the fim and atp loci. We also conclude that it is difficult to predict which mutagenesis strategy will induce a polar effect in genes downstream of the mutation site. Furthermore the strategies described here can be used to manipulate the metabolism of E. coli as showcased by the increase in intra‑ cellular ATP in the markerless ΔatpIBEFHAGDC mutant.

    Fulltekst (pdf)
    fulltext
  • 219.
    Graça, André T.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Hussein, Rana
    Forsman, Jack
    Aydin, A. Orkun
    Hall, Michael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Gätcke, Julia
    Chernev, Petko
    Wendler, Petra
    Dobbek, Holger
    Messinger, Johannes
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Zouni, Athina
    Schröder, Wolfgang P.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Umeå Plant Science Centre (UPSC). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    CryoEM insight into hydrogen positions and water networks in photosystem IIManuskript (preprint) (Annet vitenskapelig)
  • 220. Greene, Sarah E.
    et al.
    Pinkner, Jerome S.
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Dodson, Karen W.
    Shaffer, Carrie L.
    Conover, Matt S.
    Livny, Jonathan
    Hadjifrangiskou, Maria
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Hultgren, Scott J.
    Pilicide ec240 Disrupts Virulence Circuits in Uropathogenic Escherichia coli2014Inngår i: mBio, ISSN 2161-2129, E-ISSN 2150-7511, Vol. 5, nr 6, s. UNSP e02038-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Chaperone-usher pathway (CUP) pili are extracellular organelles produced by Gram-negative bacteria that mediate bacterial pathogenesis. Small-molecule inhibitors of CUP pili, termed pilicides, were rationally designed and shown to inhibit type 1 or P piliation. Here, we show that pilicide ec240 decreased the levels of type 1, P, and S piliation. Transcriptomic and proteomic analyses using the cystitis isolate UTI89 revealed that ec240 dysregulated CUP pili and decreased motility. Paradoxically, the transcript levels of P and S pilus genes were increased during growth in ec240, even though the level of P and S piliation decreased. In contrast, the most downregulated transcripts after growth in ec240 were from the type 1 pilus genes. Type 1 pilus expression is controlled by inversion of the fimS promoter element, which can oscillate between phase on and phase off orientations. ec240 induced the fimS phase off orientation, and this effect was necessary for the majority of ec240's inhibition of type 1 piliation. ec240 increased levels of the transcriptional regulators SfaB and PapB, which were shown to induce the fimS promoter phase off orientation. Furthermore, the effect of ec240 on motility was abolished in the absence of the SfaB, PapB, SfaX, and PapX regulators. In contrast to the effects of ec240, deletion of the type 1 pilus operon led to increased S and P piliation and motility. Thus, ec240 dysregulated several uropathogenic Escherichia coli (UPEC) virulence factors through different mechanisms and independent of its effects on type 1 pilus biogenesis and may have potential as an antivirulence compound. IMPORTANCE CUP pili and flagella play active roles in the pathogenesis of a variety of Gram-negative bacterial infections, including urinary tract infections mediated by UPEC. These are extremely common infections that are often recurrent and increasingly caused by antibiotic-resistant organisms. Preventing piliation and motility through altered regulation and assembly of these important virulence factors could aid in the development of novel therapeutics. This study increases our understanding of the regulation of these virulence factors, providing new avenues by which to target their expression.

    Fulltekst (pdf)
    fulltext
  • 221.
    Gröning, Remigius
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Dernstedt, Andy
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Gardfjäll, Jenny
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Ahlm, Clas
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Infektionssjukdomar. Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Normark, Johan
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Immunologi/immunkemi.
    Sundström, Peter
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin. Umeå universitet, Medicinska fakulteten, Institutionen för klinisk vetenskap, Neurovetenskaper.
    Forsell, Mattias N. E.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Immunologi/immunkemi.
    Variable immune response to SARS-CoV-2 mRNA vaccination in multiple sclerosis after rituximab treatment interruptionManuskript (preprint) (Annet vitenskapelig)
  • 222.
    Guerreiro, Duarte N.
    et al.
    Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland.
    Pucciarelli, M. Graciela
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain; Department of Molecular Biology, Universidad Autónoma de Madrid, Centre of Molecular Biology Ͽ Severo Ochoa (CBMSO CSIC-UAM), Madrid, Spain.
    Tiensuu, Teresa
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Gudynaite, Diana
    Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland.
    Boyd, Aoife
    Pathogenic Mechanisms Research Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    García-Del Portillo, Francisco
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    O Byrne, Conor P.
    Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland.
    Acid stress signals are integrated into the σb-dependent general stress response pathway via the stressosome in the food-borne pathogen Listeria monocytogenes2022Inngår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 18, nr 3, artikkel-id e1010213Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The general stress response (GSR) in Listeria monocytogenes plays a critical role in the survival of this pathogen in the host gastrointestinal tract. The GSR is regulated by the alternative sigma factor B (σB), whose role in protection against acid stress is well established. Here, we investigated the involvement of the stressosome, a sensory hub, in transducing low pH signals to induce the GSR. Mild acid shock (15 min at pH 5.0) activated σB and conferred protection against a subsequent lethal pH challenge. A mutant strain where the stressosome subunit RsbR1 was solely present retained the ability to induce σB activity at pH 5.0. The role of stressosome phosphorylation in signal transduction was investigated by mutating the putative phosphorylation sites in the core stressosome proteins RsbR1 (rsbR1-T175A,-T209A,-T241A) and RsbS (rsbS-S56A), or the stressosome kinase RsbT (rsbTN49A). The rsbS S56A and rsbT N49A mutations abolished the response to low pH. The rsbR1-T209A and rsbR1-T241A mutants displayed constitutive σB activity. Mild acid shock upregulates invasion genes inlAB and stimulates epithelial cell invasion, effects that were abolished in mutants with an inactive or overactive stressosome. Overall, the results show that the stressosome is required for acid-induced activation of σB in L. monocytogenes. Furthermore, they show that RsbR1 can function independently of its paralogues and signal transduction requires RsbT-mediated phosphorylation of RsbS on S56 and RsbR1 on T209 but not T175. These insights shed light on the mechanisms of signal transduction that activate the GSR in L. monocytogenes in response to acidic environments, and highlight the role this sensory process in the early stages of the infectious cycle.

    Fulltekst (pdf)
    fulltext
  • 223.
    Guerreiro, Duarte N.
    et al.
    Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
    Wu, Jialun
    Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
    Dessaux, Charlotte
    Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology (CNB)-CSIC, Madrid, Spain.
    de Oliveira, Ana Henriques
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Tiensuu, Teresa
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Gudynaite, Diana
    Molecular Microbiology Department, School of Life Sciences, University of Dundee, Dundee, United Kingdom.
    Marinho, Catarina M.
    Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland;Université Bourgogne Franche-Conté, Dijon, France;Institut National de la Recherche Agronomique, UMR Agroécologie, Dijon, France.
    Boyd, Aoife
    Pathogenic Mechanisms Research Group, National University of Ireland, Galway, Ireland.
    García-del Portillo, Francisco
    Laboratory of Intracellular Bacterial Pathogens, National Center for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    O’Byrne, Conor P.
    Bacterial Stress Response Group, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
    Mild Stress Conditions during Laboratory Culture Promote the Proliferation of Mutations That Negatively Affect Sigma B Activity in Listeria monocytogenes2020Inngår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 202, nr 9, artikkel-id e00751-19Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In Listeria monocytogenes, the full details of how stress signals are integrated into the σB regulatory pathway are not yet available. To help shed light on this question, we investigated a collection of transposon mutants that were predicted to have compromised activity of the alternative sigma factor B (σB). These mutants were tested for acid tolerance, a trait that is known to be under σB regulation, and they were found to display increased acid sensitivity, similar to a mutant lacking σB (ΔsigB). The transposon insertions were confirmed by whole-genome sequencing, but in each case, the strains were also found to carry a frameshift mutation in the sigB operon. The changes were predicted to result in premature stop codons, with negative consequences for σB activation, independently of the transposon location. Reduced σB activation in these mutants was confirmed. Growth measurements under conditions similar to those used during the construction of the transposon library revealed that the frameshifted sigB operon alleles conferred a growth advantage at higher temperatures, during late exponential phase. Mixed-culture experiments at 42°C demonstrated that the loss of σB activity allowed mutants to take over a population of parental bacteria. Together, our results suggest that mutations affecting σB activity can arise during laboratory culture because of the growth advantage conferred by these mutations under mild stress conditions. The data highlight the significant cost of stress protection in this foodborne pathogen and emphasize the need for whole-genome sequence analysis of newly constructed strains to confirm the expected genotype.

    IMPORTANCE: In the present study, we investigated a collection of Listeria monocytogenes strains that all carried sigB operon mutations. The mutants all had reduced σB activity and were found to have a growth advantage under conditions of mild heat stress (42°C). In mixed cultures, these mutants outcompeted the wild type when mild heat stress was present but not at an optimal growth temperature. An analysis of 22,340 published L. monocytogenes genome sequences found a high rate of premature stop codons present in genes positively regulating σB activity. Together, these findings suggest that the occurrence of mutations that attenuate σB activity can be favored under conditions of mild stress, probably highlighting the burden on cellular resources that stems from deploying the general stress response.

  • 224.
    Gurung, Jyoti
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Amer, Ayad
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Chen, Shiyun
    Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
    Diepold, Andreas
    Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
    Francis, Matthew S.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Type III secretion by Yersinia pseudotuberculosis is reliant upon an authentic N-terminal YscX secretor domain2022Inngår i: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 117, nr 4, s. 886-906Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    YscX was discovered as an essential part of the Yersinia type III secretion system about 20 years ago. It is required for substrate secretion and is exported itself. Despite this central role, its precise function and mode of action remain unknown. In order to address this knowledge gap, this present study refocused attention on YscX to build on the recent advances in the understanding of YscX function. Our experiments identified an N-terminal secretion domain in YscX promoting its secretion, with the first five codons constituting a minimal signal capable of promoting secretion of the signal less β-lactamase reporter. Replacing the extreme YscX N-terminus with known secretion signals of other Ysc-Yop substrates revealed that the YscX N-terminal segment contains non-redundant information needed for YscX function. Further, both in cis deletion of the YscX N-terminus in the virulence plasmid and ectopic expression of epitope-tagged YscX variants again lead to stable YscX production but not type III secretion of Yop effector proteins. Mislocalisation of the needle components, SctI and SctF, accompanied this general defect in Yops secretion. Hence, a coupling exists between YscX secretion permissiveness and the assembly of an operational secretion system.

    Fulltekst (pdf)
    fulltext
  • 225.
    Gurung, Jyoti M.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Amer, Ayad
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Francis, Monika
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Costa, Tiago
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Chen, Shiyun
    Zavialov, Anton V.
    Francis, Matthew S.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Heterologous complementation studies with the YscX and YscY protein families reveals a specificity for Yersinia pseudotuberculosis type III secretion2018Inngår i: Frontiers in Cellular and Infection Microbiology, E-ISSN 2235-2988, Vol. 8, artikkel-id 80Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Type III secretion systems harbored by several Gram-negative bacteria are often used to deliver host-modulating effectors into infected eukaryotic cells. About 20 core proteins are needed for assembly of a secretion apparatus. Several of these proteins are genetically and functionally conserved in type III secretion systems of bacteria associated with invertebrate or vertebrate hosts. In the Ysc family of type III secretion systems are two poorly characterized protein families, the YscX family and the YscY family. In the plasmid-encoded Ysc-Yop type III secretion system of human pathogenic Yersinia species, YscX is a secreted substrate while YscY is its non-secreted cognate chaperone. Critically, neither an yscX nor yscY null mutant of Yersinia is capable of type III secretion. In this study, we show that the genetic equivalents of these proteins produced as components of other type III secretion systems of Pseudomonas aeruginosa (PscX and PscY), Aeromonas species (AscX and AscY), Vibrio species (VscX and VscY), and Photorhabdus luminescens (SctX and SctY) all possess an ability to interact with its native cognate partner and also establish cross-reciprocal binding to non-cognate partners as judged by a yeast two-hybrid assay. Moreover, a yeast three-hybrid assay also revealed that these heterodimeric complexes could maintain an interaction with YscV family members, a core membrane component of all type III secretion systems. Despite maintaining these molecular interactions, only expression of the native yscX in the near full-length yscX deletion and native yscY in the near full-length yscY deletion were able to complement for their general substrate secretion defects. Hence, YscX and YscY must have co-evolved to confer an important function specifically critical for Yersinia type III secretion.

    Fulltekst (pdf)
    fulltext
  • 226.
    Gurung, Jyoti Mohan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Coordinating type III secretion system biogenesis in Yersinia pseudotuberculosis2020Doktoravhandling, med artikler (Annet vitenskapelig)
    Abstract [en]

    Various Gram-negative bacteria utilize type III secretion system (T3SS) to deliver effectors into eukaryotic host cells and establish mutualistic or pathogenic interactions. An example is the Ysc-Yop T3SS of pathogenic Yersinia species. The T3SS resembles a molecular syringe with a wide cylindrical membrane-spanning basal body that scaffolds a hollow extracellular needle with a pore-forming translocon complex crowned at the needle tip. Together they form a continuous conduit between bacteria and host cells that allow delivery of effector proteins. 

    Dedicated actions of cytoplasmic chaperones, regulators and components of the cytoplasmic complex orchestrates hierarchical assembly of T3SS. On the basis of secretion hierarchy, proteins can be categorized as ‘early’ needle complex proteins, ‘middle’ translocators and ‘late’ Yop effectors. However, how the system recognizes, prepares and mediates temporal delivery of T3S substrates is not fully understood. Herein, we have investigated the roles of YscX and YscY (present specifically in the Ysc family of T3SS), as well as YopN-TyeA (broadly distributed among T3SS families) to provide a better understanding of some of the molecular mechanisms governing spatiotemporal control of T3SS assembly.

    Despite reciprocal YscX-YscY binary and YscX-YscY-SctV ternary interactions between the member proteins, functional interchangeability in Yersinia was not successful. This revealed YscX and YscY must perform functions unique to Yersinia T3SS. Defined domain swapping and site-directed mutagenesis identified two highly conserved cysteine residues important for YscX function. Moreover, the N-terminal region of YscX harboured an independent T3S signal. Manipulating the YscX N-terminus by exchanging it with equivalent secretion signals from different T3S substrates abrogated T3S activity. This was explained by the need for the YscX N-terminus to correctly localize and/or assemble the ‘early’ SctI inner adapter and SctF needle protein. Therefore, N-terminal YscX performs dual functions; one as a secretion signal and the other as a structural signal to control early stage assembly of T3SS.

    In Ysc-Yop T3SS, YopN-TyeA complex is involved in the later stage of T3SS assembly, inhibiting Yops secretion until host cell contact is achieved. Analysis of the YopN C-terminus identified a specific domain stretching 279-287 critical for regulating Ysc-Yop T3SS activity. The regulation was mediated by specific hydrophobic contacts between W279 of YopN and F8 of TyeA.

    In conclusion, this work has provided novel molecular mechanisms regarding  the spatiotemporal assembly of T3SS. While the N-terminal region of YscX contributes to the early stage of T3SS assembly, the C-terminal region of YopN is critical for regulating Ysc-Yop activity at a later stage of T3SS assembly.

    Fulltekst (pdf)
    fulltext
    Download (pdf)
    spikblad
    Download (jpg)
    preview image
  • 227.
    Gurung, Jyoti
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
    Zavialov, Anton V.
    Joint Biotechnology laboratory, Department of Chemistry, University of Turku, Turku, Finland.
    Francis, Matthew S.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå Centre for Microbial Research, Umeå Univerisity, Umeå, Sweden.
    In search of key YscX elements critical for Yersinia pseudotuberculosis type III secretion.Manuskript (preprint) (Annet vitenskapelig)
  • 228.
    Gwon, Yong-Dae
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Strand, Mårten
    Lindquist, Richard
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Nilsson, Emma
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi.
    Saleeb, Michael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Elofsson, Mikael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Överby, Anna K.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Evander, Magnus
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Avdelningen för virologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Antiviral Activity of Benzavir-2 against Emerging Flaviviruses2020Inngår i: Viruses, E-ISSN 1999-4915, Vol. 12, nr 3, artikkel-id 351Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Most flaviviruses are arthropod-borne viruses, transmitted by either ticks or mosquitoes, and cause morbidity and mortality worldwide. They are endemic in many countries and have recently emerged in new regions, such as the Zika virus (ZIKV) in South-and Central America, the West Nile virus (WNV) in North America, and the Yellow fever virus (YFV) in Brazil and many African countries, highlighting the need for preparedness. Currently, there are no antiviral drugs available to treat flavivirus infections. We have previously discovered a broad-spectrum antiviral compound, benzavir-2, with potent antiviral activity against both DNA- and RNA-viruses. Our purpose was to investigate the inhibitory activity of benzavir-2 against flaviviruses. We used a ZIKV ZsGreen-expressing vector, two lineages of wild-type ZIKV, and other medically important flaviviruses. Benzavir-2 inhibited ZIKV derived reporter gene expression with an EC50 value of 0.8 +/- 0.1 µM. Furthermore, ZIKV plaque formation, progeny virus production, and viral RNA expression were strongly inhibited. In addition, 2.5 µM of benzavir-2 reduced infection in vitro in three to five orders of magnitude for five other flaviviruses: WNV, YFV, the tick-borne encephalitis virus, Japanese encephalitis virus, and dengue virus. In conclusion, benzavir-2 was a potent inhibitor of flavivirus infection, which supported the broad-spectrum antiviral activity of benzavir-2.

    Fulltekst (pdf)
    fulltext
  • 229.
    Gómez-Arrebola, Carmen
    et al.
    Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
    Hernandez, Sara B.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Culp, Elizabeth J.
    Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, ON, Hamilton, Canada.
    Wright, Gerard D.
    Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, ON, Hamilton, Canada.
    Solano, Cristina
    Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Lasa, Iñigo
    Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
    Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system2023Inngår i: Microbiology Spectrum, E-ISSN 2165-0497, Vol. 11, nr 5, artikkel-id e0037023Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.

    Fulltekst (pdf)
    fulltext
  • 230. Gómez-Consarnau, Laura
    et al.
    Akram, Neelam
    Lindell, Kristoffer
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Pedersen, Anders
    Neutze, Richard
    Milton, Debra L
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    González, José M
    Pinhassi, Jarone
    Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation2010Inngår i: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 8, artikkel-id e1000358Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Proteorhodopsins are globally abundant photoproteins found in bacteria in the photic zone of the ocean. Although their function as proton pumps with energy-yielding potential has been demonstrated, the ecological role of proteorhodopsins remains largely unexplored. Here, we report the presence and function of proteorhodopsin in a member of the widespread genus Vibrio, uncovered through whole-genome analysis. Phylogenetic analysis suggests that the Vibrio strain AND4 obtained proteorhodopsin through lateral gene transfer, which could have modified the ecology of this marine bacterium. We demonstrate an increased long-term survival of AND4 when starved in seawater exposed to light rather than held in darkness. Furthermore, mutational analysis provides the first direct evidence, to our knowledge, linking the proteorhodopsin gene and its biological function in marine bacteria. Thus, proteorhodopsin phototrophy confers a fitness advantage to marine bacteria, representing a novel mechanism for bacterioplankton to endure frequent periods of resource deprivation at the ocean’s surface.

    Fulltekst (pdf)
    fulltext
  • 231.
    Hagberg, Aleksandra
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Rzhepishevska, Olena I
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Semenets, Anastasiia
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Department of Microbiology, Virology and Biotechnology, Odessa National I.I.Mechnikov University, Odessa, Ukraine.
    Cisneros, David A.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ramstedt, Madeleine
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Surface analysis of bacterial systems using cryo-X-ray photoelectron spectroscopy2020Inngår i: Surface and Interface Analysis, ISSN 0142-2421, E-ISSN 1096-9918, Vol. 52, s. 792-801Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface analysis of biological systems using XPS often requires dehydration of the sample for it to be compatible with the ultrahigh vacuum of the spectrometer. However, if samples are frozen to liquid-nitrogen temperature prior to and during analysis, water can be retained in the sample and the organization of the sample surface should be preserved to a higher degree than in desiccated samples. This article presents recent developments of cryo-X-ray photoelectron spectroscopy (cryo-XPS) for analyses of hydrated biological samples at liquid nitrogen temperature. We describe experiments on bacterial cells, bacterial biofilms, and bacterial outer membrane vesicles using a variety of bacterial species. Differences and similarities in surface chemistry are monitored depending on growth in liquid culture, on culture plates, as well as in biofilms, and are discussed. Two data treatment methods providing decomposition of the C 1s spectra into lipid, polysaccharide, and peptide/peptidoglycan content are used and compared.

    Fulltekst (pdf)
    fulltext
  • 232.
    Hainzl, Tobias
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Bonde, Mari
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. QureTech Bio, Umeå, Sweden.
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sauer-Eriksson, A. Elisabeth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Structural insights into CodY activation and DNA recognition2023Inngår i: Nucleic Acids Research, ISSN 0305-1048, E-ISSN 1362-4962, Vol. 51, nr 14, s. 7631-7648Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Virulence factors enable pathogenic bacteria to infect host cells, establish infection, and contribute to disease progressions. In Gram-positive pathogens such as Staphylococcus aureus (Sa) and Enterococcus faecalis (Ef), the pleiotropic transcription factor CodY plays a key role in integrating metabolism and virulence factor expression. However, to date, the structural mechanisms of CodY activation and DNA recognition are not understood. Here, we report the crystal structures of CodY from Sa and Ef in their ligand-free form and their ligand-bound form complexed with DNA. Binding of the ligands - branched chain amino acids and GTP - induces conformational changes in the form of helical shifts that propagate to the homodimer interface and reorient the linker helices and DNA binding domains. DNA binding is mediated by a non-canonical recognition mechanism dictated by DNA shape readout. Furthermore, two CodY dimers bind to two overlapping binding sites in a highly cooperative manner facilitated by cross-dimer interactions and minor groove deformation. Our structural and biochemical data explain how CodY can bind a wide range of substrates, a hallmark of many pleiotropic transcription factors. These data contribute to a better understanding of the mechanisms underlying virulence activation in important human pathogens.

    Fulltekst (pdf)
    fulltext
  • 233.
    Hall, Michael
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Begum, Afshan
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Lindberg, Mikael J.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sauer, Uwe H.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Sauer-Eriksson, A. Elisabeth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Structural basis for glutathione-mediated activation of the virulence regulatory protein PrfA in Listeria2016Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, nr 51, s. 14733-14738Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Infection by the human bacterial pathogen Listeria monocytogenes is mainly controlled by the positive regulatory factor A (PrfA), a member of the Crp/Fnr family of transcriptional activators. Published data suggest that PrfA requires the binding of a cofactor for full activity, and it was recently proposed that glutathione (GSH) could fulfill this function. Here we report the crystal structures of PrfA in complex with GSH and in complex with GSH and its cognate DNA, the hly operator PrfA box motif. These structures reveal the structural basis for a GSH-mediated allosteric mode of activation of PrfA in the cytosol of the host cell. The crystal structure of PrfAWT in complex only with DNA confirms that PrfAWT can adopt a DNA binding-compatible structure without binding the GSH activator molecule. By binding to PrfA in the cytosol of the host cell, GSH induces the correct fold of the HTH motifs, thus priming the PrfA protein for DNA interaction.

  • 234.
    Halter, Tamara
    et al.
    Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
    Köstlbacher, Stephan
    Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; Doctoral School in Microbiology and Environmental Science, University of Vienna, Vienna, Austria.
    Collingro, Astrid
    Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
    Sixt, Barbara Susanne
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Tönshoff, Elena R.
    Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule Zürich (ETH), Zurich, Switzerland.
    Hendrickx, Frederik
    Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
    Kostanjšek, Rok
    Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
    Horn, Matthias
    Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
    Ecology and evolution of chlamydial symbionts of arthropods2022Inngår i: ISME Communications, E-ISSN 2730-6151, Vol. 2, nr 1, artikkel-id 45Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The phylum Chlamydiae consists of obligate intracellular bacteria including major human pathogens and diverse environmental representatives. Here we investigated the Rhabdochlamydiaceae, which is predicted to be the largest and most diverse chlamydial family, with the few described members known to infect arthropod hosts. Using published 16 S rRNA gene sequence data we identified at least 388 genus-level lineages containing about 14 051 putative species within this family. We show that rhabdochlamydiae are mainly found in freshwater and soil environments, suggesting the existence of diverse, yet unknown hosts. Next, we used a comprehensive genome dataset including metagenome assembled genomes classified as members of the family Rhabdochlamydiaceae, and we added novel complete genome sequences of Rhabdochlamydia porcellionis infecting the woodlouse Porcellio scaber, and of 'Candidatus R. oedothoracis' associated with the linyphiid dwarf spider Oedothorax gibbosus. Comparative analysis of basic genome features and gene content with reference genomes of well-studied chlamydial families with known host ranges, namely Parachlamydiaceae (protist hosts) and Chlamydiaceae (human and other vertebrate hosts) suggested distinct niches for members of the Rhabdochlamydiaceae. We propose that members of the family represent intermediate stages of adaptation of chlamydiae from protists to vertebrate hosts. Within the genus Rhabdochlamydia, pronounced genome size reduction could be observed (1.49-1.93 Mb). The abundance and genomic distribution of transposases suggests transposable element expansion and subsequent gene inactivation as a mechanism of genome streamlining during adaptation to new hosts. This type of genome reduction has never been described before for any member of the phylum Chlamydiae. This study provides new insights into the molecular ecology, genomic diversity, and evolution of representatives of one of the most divergent chlamydial families.

    Fulltekst (pdf)
    fulltext
  • 235.
    Hansen, Sabine
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Hall, Michael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Grundström, Christin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Brännström, Kristoffer
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Sauer-Eriksson, A. Elisabeth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Johansson, Jörgen
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    A Novel Growth-Based Selection Strategy Identifies New Constitutively Active Variants of the Major Virulence Regulator PrfA in Listeria monocytogenes2020Inngår i: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 202, nr 11, artikkel-id e00115-20Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Listeria monocytogenes is a Gram-positive pathogen able to cause severe human infections. Its major virulence regulator is the transcriptional activator PrfA, a member of the Crp/Fnr family of transcriptional regulators. To establish a successful L. monocytogenes infection, the PrfA protein needs to be in an active conformation, either by binding the cognate inducer glutathione (GSH) or by possessing amino acid substitutions rendering the protein constitutively active (PrfA*). By a yet unknown mechanism, phosphotransferase system (PTS) sugars repress the activity of PrfA. We therefore took a transposon-based approach to identify the mechanism by which PTS sugars repress PrfA activity. For this, we screened a transposon mutant bank to identify clones able to grow in the presence of glucose-6-phosphate as the sole carbon source. Surprisingly, most of the isolated transposon mutants also carried amino acid substitutions in PrfA. In transposon-free strains, the PrfA amino acid substitution mutants displayed growth, virulence factor expression, infectivity, and DNA binding, agreeing with previously identified PrIA* mutants. Hence, the initial growth phenotype observed in the isolated clone was due to the amino acid substitution in PrfA and unrelated to the loci inactivated by the transposon mutant. Finally, we provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation. IMPORTANCE The Gram-positive bacterium Listeria monocytogenes is a human pathogen affecting mainly the elderly, immunocompromised people, and pregnant women. It can lead to meningoencephalitis, septicemia, and abortion. The major virulence regulator in L. monocytogenes is the PrfA protein, a transcriptional activator. Using a growth-based selection strategy, we identified mutations in the PrfA protein leading to constitutively active virulence factor expression. We provide structural evidence for the existence of an intermediately activated PrfA state, which gives new insights into PrfA protein activation.

    Fulltekst (pdf)
    fulltext
  • 236. Heckl, Dirk
    et al.
    Charpentier, Emmanuelle
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, Germany ; Department of Regulation in Infection Biology, Hannover Medical School, Hannover, Germany.
    Toward whole-transcriptome editing with CRISPR-Cas92015Inngår i: Molecular Cell, ISSN 1097-2765, E-ISSN 1097-4164, Vol. 58, nr 4, s. 560-562Artikkel i tidsskrift (Annet vitenskapelig)
    Abstract [en]

    Targeted regulation of gene expression holds huge promise for biomedical research. In a series of recent publications (Gilbert et al., 2014; Konermann et al., 2015; Zalatan et al., 2015), sophisticated, multiplex-compatible transcriptional activator systems based on the CRISPR-Cas9 technology and genome-scale libraries advance the field toward whole-transcriptome control.

  • 237.
    Heidler, Thomas V.
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ernits, Karin
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Ziolkowska, Agnieszka
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Claesson, Rolf
    Umeå universitet, Medicinska fakulteten, Institutionen för odontologi.
    Persson, Karina
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Porphyromonas gingivalis fimbrial protein Mfa5 contains a von Willebrand factor domain and an intramolecular isopeptide2021Inngår i: Communications Biology, E-ISSN 2399-3642, Vol. 4, nr 1, artikkel-id 106Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The Gram-negative bacterium Porphyromonas gingivalis is a secondary colonizer of the oral biofilm and is involved in the onset and progression of periodontitis. Its fimbriae, of type-V, are important for attachment to other microorganisms in the biofilm and for adhesion to host cells. The fimbriae are assembled from five proteins encoded by the mfa1 operon, of which Mfa5 is one of the ancillary tip proteins. Here we report the X-ray structure of the N-terminal half of Mfa5, which reveals a von Willebrand factor domain and two IgG-like domains. One of the IgG-like domains is stabilized by an intramolecular isopeptide bond, which is the first such bond observed in a Gram-negative bacterium. These features make Mfa5 structurally more related to streptococcal adhesins than to the other P. gingivalis Mfa proteins. The structure reported here indicates that horizontal gene transfer has occurred among the bacteria within the oral biofilm.

    Fulltekst (pdf)
    fulltext
  • 238.
    Henriksson, Maria
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Francis, Matthew
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Peden, Alex
    Aili, Margareta
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Stefansson, Kristina
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    Palmer, Ruth
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för molekylärbiologi (Teknisk-naturvetenskaplig fakultet).
    Aitken, Alastair
    Hallberg, Bengt
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Patologi.
    A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo2002Inngår i: European Journal of Biochemistry, ISSN 0014-2956, E-ISSN 1432-1033, Vol. 269, nr 20, s. 4921-4929Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    14-3-3 proteins play an important role in a multitude of signalling pathways. The interactions between 14-3-3 and other signalling proteins, such as Raf and KSR (kinase suppressor of Ras), occur in a phospho-specific manner. Recently, a phosphorylation-independent interaction has been reported to occur between 14-3-3 and several proteins, for example 5-phosphatase, p75NTR-associated cell death executor (NADE) and the bacterial toxin Exoenzyme S (ExoS), an ADP-ribosyltransferase from Pseudomonas aeruginosa. In this study we have identified the amino acid residues on ExoS, which are responsible for its specific interaction with 14-3-3. Furthermore, we show that a peptide derived from ExoS, containing the 14-3-3 interaction site, effectively competes out the interaction between ExoS and 14-3-3. In addition, competition with this peptide blocks ExoS modification of Ras in our Ras modification assay. We show that the ExoS protein interacts with all isoforms of the 14-3-3 family tested. Moreover, in vivo an ExoS protein lacking the 14-3-3 binding site has a reduced capacity to ADP ribosylate cytoplasmic proteins, e.g. Ras, and shows a reduced capacity to change the morphology of infected cells.

  • 239.
    Hernández, Sara B.
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Castanheira, Sónia
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Graciela Pucciarelli, M.
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain; Department of Molecular Biology, Universidad Autónoma de Madrid (UAM), Madrid, Spain; Center for Molecular Biology “Severo Ochoa” (CBMSO)-CSIC, Madrid, Spain.
    Cestero, Juan J.
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Rico-Pérez, Gadea
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Paradela, Alberto
    Proteomics Unit, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Ayala, Juan A.
    Center for Molecular Biology “Severo Ochoa” (CBMSO)-CSIC, Madrid, Spain.
    Velázquez, Sonsoles
    Institute of Medicinal Chemistry (IQM)-CSIC, Madrid, Spain.
    San-Félix, Ana
    Institute of Medicinal Chemistry (IQM)-CSIC, Madrid, Spain.
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Portillo, Francisco García-Del
    Laboratory of Intracellular Bacterial Pathogens, National Centre for Biotechnology (CNB)-CSIC, Madrid, Spain.
    Peptidoglycan editing in non-proliferating intracellular Salmonella as source of interference with immune signaling2022Inngår i: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 18, nr 1, artikkel-id e1010241Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Salmonella enterica causes intracellular infections that can be limited to the intestine or spread to deeper tissues. In most cases, intracellular bacteria show moderate growth. How these bacteria face host defenses that recognize peptidoglycan, is poorly understood. Here, we report a high-resolution structural analysis of the minute amounts of peptidoglycan purified from S. enterica serovar Typhimurium (S. Typhimurium) infecting fibroblasts, a cell type in which this pathogen undergoes moderate growth and persists for days intracellularly. The peptidoglycan of these non-proliferating bacteria contains atypical crosslinked muropeptides with stem peptides trimmed at the L-alanine-D-glutamic acid-(γ) or D-glutamic acid-(γ)-meso-diaminopimelic acid motifs, both sensed by intracellular immune receptors. This peptidoglycan has a reduced glycan chain average length and ~30% increase in the L,D-cross-link, a type of bridge shared by all the atypical crosslinked muropeptides identified. The L,Dtranspeptidases LdtD (YcbB) and LdtE (YnhG) are responsible for the formation of these L, D-bridges in the peptidoglycan of intracellular bacteria. We also identified in a fraction of muropeptides an unprecedented modification in the peptidoglycan of intracellular S. Typhimurium consisting of the amino alcohol alaninol replacing the terminal (fourth) D-alanine. Alaninol was still detectable in the peptidoglycan of a double mutant lacking LdtD and LdtE, thereby ruling out the contribution of these enzymes to this chemical modification. Remarkably, all multiple mutants tested lacking candidate enzymes that either trim stem peptides or form the L,D-bridges retain the capacity to modify the terminal D-alanine to alaninol and all attenuate NF-κB nuclear translocation. These data inferred a potential role of alaninol-containing muropeptides in attenuating pro-inflammatory signaling, which was confirmed with a synthetic tetrapeptide bearing such amino alcohol. We suggest that the modification of D-alanine to alaninol in the peptidoglycan of non-proliferating intracellular S. Typhimurium is an editing process exploited by this pathogen to evade immune recognition inside host cells.

    Fulltekst (pdf)
    fulltext
  • 240.
    Hernández, Sara B
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Cava, Felipe
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Environmental roles of microbial amino acid racemases2016Inngår i: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 18, nr 6, s. 1673-1685Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Enzymes catalysing the stereo-chemical inter-conversion of amino acids are known as amino acid racemases. In bacteria, these enzymes are fundamental to synthesize the D-Ala and D-Glu that are critical components of the peptidoglycan. In addition to this structural function in cell wall assembly, D-amino acids produced by microbial amino acid racemases have been described as relevant constituents in other prokaryotic structures (e.g. capsule, non-ribosomal peptides) and have been associated to growth fitness and to processes such as biofilm development, spore germination, and signalling. The recent discovery of broad spectrum racemases able to produce and release several D-amino acids to the environment suggests that these enzymes might have a great impact in microbial ecology. Consequently, new data on the biochemistry and regulation of racemases is key to understand the biological significance of D-enantiomers in nature, in particular their effect on microbial social networks. This review summarizes current knowledge on the environmental roles of bacterial racemases with an emphasis on the potential roles of the new broad spectrum enzymes in natural environments.

  • 241.
    Hildebrandt, Franziska
    et al.
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden.
    Mohammed, Mubasher
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden.
    Dziedziech, Alexis
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden; Department of Global Health, Institut Pasteur, Paris, France; Department of Global Health, Institut Pasteur, Paris, France; Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.
    Bhandage, Amol K.
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden; Department of Global Health, Institut Pasteur, Paris, France; Department of Cell and Molecular Biology, Biomedical Center (BMC), Uppsala University, Uppsala, Sweden.
    Divne, Anna-Maria
    Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden.
    Barrenäs, Fredrik
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden.
    Barragan, Antonio
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden.
    Henriksson, Johan
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten).
    Ankarklev, Johan
    Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden; Microbial Single Cell Genomics Facility, SciLifeLab, Biomedical Center (BMC) Uppsala University, Uppsala, Sweden.
    scDual-Seq of Toxoplasma gondii-infected mouse BMDCs reveals heterogeneity and differential infection dynamics2023Inngår i: Frontiers in Immunology, E-ISSN 1664-3224, Vol. 14, artikkel-id 1224591Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Dendritic cells and macrophages are integral parts of the innate immune system and gatekeepers against infection. The protozoan pathogen, Toxoplasma gondii, is known to hijack host immune cells and modulate their immune response, making it a compelling model to study host-pathogen interactions. Here we utilize single cell Dual RNA-seq to parse out heterogeneous transcription of mouse bone marrow-derived dendritic cells (BMDCs) infected with two distinct genotypes of T. gondii parasites, over multiple time points post infection. We show that the BMDCs elicit differential responses towards T. gondii infection and that the two parasite lineages distinctly manipulate subpopulations of infected BMDCs. Co-expression networks define host and parasite genes, with implications for modulation of host immunity. Integrative analysis validates previously established immune pathways and additionally, suggests novel candidate genes involved in host-pathogen interactions. Altogether, this study provides a comprehensive resource for characterizing host-pathogen interplay at high-resolution.

    Fulltekst (pdf)
    fulltext
  • 242. Hille, Frank
    et al.
    Charpentier, Emmanuelle
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin 10117, Germany.
    CRISPR-Cas: biology, mechanisms and relevance2016Inngår i: Philosophical Transactions of the Royal Society of London. Biological Sciences, ISSN 0962-8436, E-ISSN 1471-2970, Vol. 371, nr 1707, artikkel-id 20150496Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes-termed spacers-into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue 'The new bacteriology'.

    Fulltekst (pdf)
    fulltext
  • 243. Hille, Frank
    et al.
    Richter, Hagen
    Wong, Shi Pey
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Institute for Biology, Humboldt University, Germany.
    Bratovic, Majda
    Ressel, Sarah
    Charpentier, Emmanuelle
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Department of Regulation in Infection Biology, Max Planck Institute for Infection Biology, Berlin, Germany; Institute for Biology, Humboldt University, Germany.
    The Biology of CRISPR-Cas: Backward and Forward2018Inngår i: Cell, ISSN 0092-8674, E-ISSN 1097-4172, Vol. 172, nr 6, s. 1239-1259Artikkel, forskningsoversikt (Fagfellevurdert)
    Abstract [en]

    In bacteria and archaea, clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) proteins constitute an adaptive immune system against phages and other foreign genetic elements. Here, we review the biology of the diverse CRISPR-Cas systems and the major progress achieved in recent years in understanding the underlying mechanisms of the three stages of CRISPR-Cas immunity: adaptation, crRNA biogenesis, and interference. The ecology and regulation of CRISPR-Cas in the context of phage infection, the roles of these systems beyond immunity, and the open questions that propel the field forward are also discussed.

  • 244.
    Hillgren, J. Mikael
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Öberg, Christopher T
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Elofsson, Mikael
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Syntheses of pseudoceramines A-D and a new synthesis of spermatinamine, bromotyrosine natural products from marine sponges2012Inngår i: Organic and biomolecular chemistry, ISSN 1477-0520, E-ISSN 1477-0539, Vol. 10, nr 6, s. 1246-1254Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Herein we report the total syntheses of pseudoceramine A-D (2-5) and spermatinamine (1) isolated from the marine sponge Pseudoceratina sp. Direct acyl substitution of α-hydroxyiminoesters with amine nucleophiles was developed as a key transformation. The synthetic compounds confirm the reported structures and importantly gives access to non-symmetrical spermine based natural products carrying two different bromotyrosine building blocks. Our new synthesis of spermatinamine is two steps shorter and more efficient than the previously reported sequence.

  • 245. Holm, Kare Olav
    et al.
    Nilsson, Kristina
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Hjerde, Erik
    Willassen, Nils-Peder
    Milton, Debra L.
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Complete genome sequence of Vibrio anguillarum strain NB10, a virulent isolate from the Gulf of Bothnia2015Inngår i: Standards in Genomic Sciences, E-ISSN 1944-3277, Vol. 10, artikkel-id 60Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Vibrio anguillarum causes a fatal hemorrhagic septicemia in marine fish that leads to great economical losses in aquaculture world-wide. Vibrio anguillarum strain NB10 serotype O1 is a Gram-negative, motile, curved rod-shaped bacterium, isolated from a diseased fish on the Swedish coast of the Gulf of Bothnia, and is slightly halophilic. Strain NB10 is a virulent isolate that readily colonizes fish skin and intestinal tissues. Here, the features of this bacterium are described and the annotation and analysis of its complete genome sequence is presented. The genome is 4,373,835 bp in size, consists of two circular chromosomes and one plasmid, and contains 3,783 protein-coding genes and 129 RNA genes.

    Fulltekst (pdf)
    fulltext
  • 246.
    Horvath, Istvan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Weise, Christoph F
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Andersson, Emma K
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Chorell, Erik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Sellstedt, Magnus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Bengtsson, Christoffer
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Olofsson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Hultgren, Scott J
    Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States.
    Chapman, Matthew
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Wolf-Watz, Magnus
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Almqvist, Fredrik
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Wittung-Stafshede, Pernilla
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Mechanisms of Protein Oligomerization: Inhibitor of Functional Amyloids Templates α-Synuclein Fibrillation2012Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 134, nr 7, s. 3439-3444Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Small organic molecules that inhibit functional bacterial amyloid fibers, curli, are promising new antibiotics. Here we investigated the mechanism by which the ring-fused 2-pyridone FN075 inhibits fibrillation of the curli protein CsgA. Using a variety of biophysical techniques, we found that FN075 promotes CsgA to form off-pathway, non-amyloidogenic oligomeric species. In light of the generic properties of amyloids, we tested whether FN075 would also affect the fibrillation reaction of human α-synuclein, an amyloid-forming protein involved in Parkinson's disease. Surprisingly, FN075 stimulates α-synuclein amyloid fiber formation as measured by thioflavin T emission, electron microscopy (EM), and atomic force microscopy (AFM). NMR data on (15)N-labeled α-synuclein show that upon FN075 addition, α-synuclein oligomers with 7 nm radius form in which the C-terminal 40 residues remain disordered and solvent exposed. The polypeptides in these oligomers contain β-like secondary structure, and the oligomers are detectable by AFM, EM, and size-exclusion chromatography (SEC). Taken together, FN075 triggers oligomer formation of both proteins: in the case of CsgA, the oligomers do not proceed to fibers, whereas for α-synuclein, the oligomers are poised to rapidly form fibers. We conclude that there is a fine balance between small-molecule inhibition and templation that depends on protein chemistry.

  • 247.
    Hosseinzadeh, Ava
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Messer, Philipp K
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Urban, Constantin F
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Stable Redox-Cycling Nitroxide Tempol Inhibits NET Formation2012Inngår i: Frontiers in Immunology, E-ISSN 1664-3224, Vol. 3, artikkel-id 391Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To prevent the spread of pathogens neutrophils as the first line of defense are able to release Neutrophil Extracellular Traps (NETs), a recently discovered form of immune response. Reactive oxygen species (ROS) have been shown to be essential for many different induction routes of NET formation. Therefore, pharmacological inhibition of ROS generation has implications for research and medicine related to NETs. The application of diphenylene iodonium (DPI), an inhibitor of NADPH oxidase activity, is limited due to its toxicity to host cells as well as microbes. Therefore, we investigated the effect of 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) a membrane-permeable radical scavenger on NET formation triggered by phorbol esters and Candida albicans. We quantified the amount of NETs with two complementary methods, using a microscopic analysis and an online fluorescence-based assay. In line with removal of ROS, Tempol reduced the amount of NET formation by neutrophils challenged with those stimuli significantly. Since Tempol efficiently blocks NET formation in vitro, it might be promising to test the effect of Tempol in experimental models of disorders in which NETs probably have hazardous effects.

    Fulltekst (pdf)
    fulltext
  • 248.
    Hosseinzadeh, Ava
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Rofougaran, Reza
    Umeå universitet, Medicinska fakulteten, Institutionen för farmakologi och klinisk neurovetenskap, Klinisk neurovetenskap.
    Vodnala, Munender
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Kötemann, A
    Hofer, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk kemi och biofysik.
    Urban, Constantin F.
    Umeå universitet, Medicinska fakulteten, Institutionen för molekylärbiologi (Medicinska fakulteten). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Adenosine is a drugable negative regulator of neutrophil activity during Candida albicans infectionManuskript (preprint) (Annet vitenskapelig)
  • 249.
    Hosseinzadeh, Ava
    et al.
    Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Stylianou, Marios
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Lopes, Jose Pedro
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi, Klinisk bakteriologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Müller, Daniel C.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Häggman, André
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Holmberg, Sandra
    Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi.
    Grumaz, Christian
    Johansson, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS). Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR).
    Sohn, Kai
    Dieterich, Christoph
    Urban, Constantin F.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Stable Redox-Cycling Nitroxide Tempol has Antifungal and Immune-modulatory Properties2019Inngår i: Frontiers in Microbiology, E-ISSN 1664-302X, Vol. 10, artikkel-id 1843Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Invasive mycoses remain underdiagnosed and difficult to treat. Hospitalized individuals with compromised immunity increase in number and constitute the main risk group for severe fungal infections. Current antifungal therapy is hampered by slow and insensitive diagnostics and frequent toxic side effects of standard antifungal drugs. Identification of new antifungal compounds with high efficacy and low toxicity is therefore urgently required. We investigated the antifungal activity of tempol, a cell-permeable nitroxide. To narrow down possible mode of action we used RNA-seq technology and metabolomics to probe for pathways specifically disrupted in the human fungal pathogen Candida albicans due to tempol administration. We found genes upregulated which are involved in iron homeostasis, mitochondrial stress, steroid synthesis, and amino acid metabolism. In an ex vivo whole blood infection, tempol treatment reduced C. albicans colony forming units and at the same time increased the release of pro-inflammatory cytokines, such as interleukin 8 (IL-8, monocyte chemoattractant protein-1, and macrophage migration inhibitory factor). In a systemic mouse model, tempol was partially protective with a significant reduction of fungal burden in the kidneys of infected animals during infection onset. The results obtained propose tempol as a promising new antifungal compound and open new opportunities for the future development of novel therapies.

    Fulltekst (pdf)
    fulltext
  • 250.
    Hosseinzadeh, Ava
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Thompson, Paul R.
    Segal, Brahm H.
    Urban, Constantin F.
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Umeå universitet, Medicinska fakulteten, Umeå Centre for Microbial Research (UCMR). Umeå universitet, Medicinska fakulteten, Molekylär Infektionsmedicin, Sverige (MIMS).
    Nicotine induces neutrophil extracellular traps2016Inngår i: Journal of Leukocyte Biology, ISSN 0741-5400, E-ISSN 1938-3673, Vol. 100, nr 5, s. 1105-1112Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    NETs serve to ensnare and kill microbial pathogens. However, NETs can at the same time contribute to tissue damage and excessive inflammation. Nicotine is a major toxic agent and has been associated with exacerbated inflammatory diseases. The current study aimed at investigating the role of nicotine, the addictive component of tobacco and electronic cigarettes, on triggering NET formation. We report that nicotine induces neutrophils to release NETs in a dose-dependent manner. Nicotine-induced NET formation is mediated via nicotine acetylcholine receptors, depends on Akt and PAD4 activation, but is Nox2-independent, as demonstrated by pharmacological inhibition of Nox2 and by use of Nox2-deficient mouse neutrophils. These findings demonstrate that nicotine induces NETs, which may in turn contribute to smoking-related diseases.

2345678 201 - 250 of 633
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf